Ellahi, Rahmat

Recent Trends in Coatings and Thin Film–Modeling and Application - Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute 2021 - 1 electronic resource (508 p.)

Open Access

Over the past four decades, there has been increased attention given to the research of fluid mechanics due to its wide application in industry and phycology. Major advances in the modeling of key topics such Newtonian and non-Newtonian fluids and thin film flows have been made and finally published in the Special Issue of coatings. This is an attempt to edit the Special Issue into a book. Although this book is not a formal textbook, it will definitely be useful for university teachers, research students, industrial researchers and in overcoming the difficulties occurring in the said topic, while dealing with the nonlinear governing equations. For such types of equations, it is often more difficult to find an analytical solution or even a numerical one. This book has successfully handled this challenging job with the latest techniques. In addition, the findings of the simulation are logically realistic and meet the standard of sufficient scientific value.


Creative Commons


English

books978-3-0365-1015-6 9783036510149 9783036510156

10.3390/books978-3-0365-1015-6 doi


Technology: general issues

Synovial fluid coating shear-thinning and -thickening models mass transport asymmetric channel analytical solution thin film spin coating rotating disk nanoparticles Newtonian fluids coatings curved stretched surface nanoliquid nonlinear thermal radiation entropy generation Reiner-Phillipoff fluid time-dependent thermal radiation homotopy analysis method (HAM) thin film of micropolar fluid porous medium thermophoresis skin friction Nusselt number and Sherwood number variable thickness of the liquid film HAM optical fiber coating double-layer coating viscoelastic PTT fluid analytic and numerical simulations thin film casson nanofluid SWCNTs and MWCNTs stretching cylinder MHD unsteady flow and heat transfer nanofluid Blasius–Rayleigh–Stokes variable dual solutions numerical solution correlation expressions Casson fluid condensation film heat generation/consumption thin liquid film flow carbon nanotubes Cattaneo-Christov heat flux variable heat source/sink heated bi-phase flow couple stress fluid lubrication effects slippery walls magnetohydrodynamics Darcy-Forchheimer nanofluid nonlinear extending disc variable thin layer HAM and numerical method peristaltic flow an endoscope variable viscosity Adomian solutions different wave forms pseudo-similarity variable micropolar nanofluid darcy forchheimer model MHD flow triple solution stability analysis APCM Caputo derivative unsteady flow shrinking surface Williamson model peristaltic pumping convective boundary conditions analytic solutions second order slip double stratification Cattaneo–Christov heat flux variable thermal conductivity Williamson nanofluid velocity second slip wave forms exact solutions magnetic field heat and mass transfer Hall current Catttaneo-Christov heat flux homogeneous–heterogeneous reactions viscoelastic fluids heterogeneous–homogeneous reactions mixed convective flow binary chemical reaction arrhenius activation energy gas-liquid coatings bubbles two-fluid model phase distribution HPM double diffusion curved channel compliant walls analytical solutions third grade fluid model hybrid nanofluid induced magnetic field mixed convection heat generation peristalsis cilia beating Non-Newtonian Bejan number Jeffrey fluid model eccentric annuli droplet impact modelling impedance analysis rain erosion ultrasound measurements viscoelastic modelling wind turbine blades computational modelling rain erosion testing viscoelastic characterization development and characterization of coatings applications of thin films nanostructured materials surfaces and interfaces applications of multiphase fluids mathematical modeling on biological applications electronics magnetics and magneto-optics