TY - GEN AU - Reinoso Garcia,Oscar AU - Payá,Luis TI - Visual Sensors SN - books978-3-03928-339-2 PY - 2020/// PB - MDPI - Multidisciplinary Digital Publishing Institute KW - recognition algorithm KW - n/a KW - 3D ConvNets KW - consistent line clustering KW - skeletal data KW - fused point and line feature matching KW - soft decision tree KW - texture retrieval KW - vision system KW - laser sensor KW - neural network KW - iris segmentation KW - correlation filters KW - embedded systems KW - underwater imaging KW - stereo vision KW - seam-line KW - image processing KW - quality control KW - dynamic programming KW - visual information fusion KW - semantic segmentation KW - parallel line KW - textile retrieval KW - structure extraction KW - line scan camera KW - orientation relevance KW - measurement error KW - rotation-angle KW - star image prediction KW - convolutional neural network (CNN) KW - tightly-coupled VIO KW - visual sensors KW - stereo KW - parking assist system KW - visual detection KW - omnidirectional imaging KW - RGB-D SLAM KW - narrow butt joint KW - appearance-temporal features KW - vision-guided robotic grasping KW - scale invariance KW - support vector machine (SVM) KW - straight wing aircraft KW - statistical information of gray-levels differences KW - Local Binary Patterns KW - robotics KW - mobile robots KW - textile localization KW - indoor environment KW - CLOSIB KW - geometric moments KW - perceptually uniform histogram KW - single-shot 3D shape measurement KW - salient region detection KW - person re-identification KW - calibration KW - stereo camera KW - simplified initialization strategy KW - LSTM KW - SLAM KW - image mosaic KW - convolutional neural network KW - lane marking detection KW - finger alphabet KW - robot manipulation KW - patrol robot KW - inverse compositional Gauss-Newton algorithm KW - checkerboard KW - action localization KW - hybrid histogram descriptor KW - pivotal frames KW - lane marking reconstruction KW - warp function KW - visual localization KW - RGB-D KW - automatic calibration KW - Siamese network KW - object recognition KW - human visual system KW - LRF KW - Gray code KW - visual tracking KW - motion-aware KW - visual odometry KW - adaptive update strategy KW - Manhattan frame estimation KW - vibration KW - confidence response map KW - lane marking KW - 3D reconstruction KW - indoor visual SLAM KW - pose estimation KW - global feature descriptor KW - sweet pepper KW - texture classification KW - ego-motion estimation KW - pose estimates KW - planes intersection KW - adaptive model KW - support vector machines KW - motif co-occurrence histogram KW - handshape recognition KW - non-rigid reconstruction KW - camera calibration KW - map representation KW - optical flow KW - robotic welding KW - FOV KW - background dictionary KW - appearance based model KW - Visual Sensors KW - spatial transformation KW - star sensor KW - image retrieval KW - depth vision KW - iterative closest point KW - automated design KW - semantic mapping KW - regression based model KW - seam tracking KW - image binarization KW - GTAW KW - boosted decision tree KW - pedestrian detection KW - presentation attack detection KW - visible light and near-infrared light camera sensors KW - large field of view KW - fringe projection profilometry KW - sensors combination KW - catadioptric sensor KW - RGB-D sensor KW - texture description KW - UAV image KW - motion estimation KW - extrinsic calibration KW - visual sensor KW - advanced driver assistance system (ADAS) KW - content-based image retrieval KW - action segmentation KW - stereo-vision KW - visual mapping KW - around view monitor (AVM) system KW - illumination KW - speed measurement KW - Richardson-Lucy algorithm KW - digital image correlation KW - point cloud KW - receptive field correspondence KW - human visual attention KW - camera pose KW - sign language KW - symmetry axis KW - end-to-end architecture KW - local parallel cross pattern KW - iris recognition KW - depth image registration N1 - Open Access N2 - Visual sensors are able to capture a large quantity of information from the environment around them. A wide variety of visual systems can be found, from the classical monocular systems to omnidirectional, RGB-D, and more sophisticated 3D systems. Every configuration presents some specific characteristics that make them useful for solving different problems. Their range of applications is wide and varied, including robotics, industry, agriculture, quality control, visual inspection, surveillance, autonomous driving, and navigation aid systems. In this book, several problems that employ visual sensors are presented. Among them, we highlight visual SLAM, image retrieval, manipulation, calibration, object recognition, navigation, etc UR - https://mdpi.com/books/pdfview/book/2141 UR - https://directory.doabooks.org/handle/20.500.12854/62289 ER -