Stainless Steels and Alloys

By: Material type: ArticleArticleLanguage: English Publication details: IntechOpen 2019Description: 1 electronic resource (158 p.)ISBN:
  • intechopen.76956
  • 9781789853704
  • 9781789853698
Subject(s): Online resources: Summary: Materials science is the magic that allows us to change the chemical composition and microstructure of material to regulate its corrosion-mechanical, technological, and functional properties. Five major classes of stainless steels are widely used: ferritic, austenitic, martensitic, duplex, and precipitation hardening. Austenitic stainless steels are extensively used for service down to as low as the temperature of liquid helium (-269ºC). This is largely due to the lack of a clearly defined transition from ductile to brittle fracture in impact toughness testing. Steels with ferritic or martensitic structures show a sudden change from ductile (safe) to brittle (unsafe) fracture over a small temperature difference. Even the best of these steels shows this behavior at temperatures higher than -100ºC and in many cases only just below zero. Various types of stainless steel are used across the whole temperature range from ambient to 1100ºC. This book will be useful to scientists, engineers, masters, graduate students, and students. I hope readers will enjoy this book and that it will serve to create new materials with unique properties.
Item type:
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Open Access star Unrestricted online access

Materials science is the magic that allows us to change the chemical composition and microstructure of material to regulate its corrosion-mechanical, technological, and functional properties. Five major classes of stainless steels are widely used: ferritic, austenitic, martensitic, duplex, and precipitation hardening. Austenitic stainless steels are extensively used for service down to as low as the temperature of liquid helium (-269ºC). This is largely due to the lack of a clearly defined transition from ductile to brittle fracture in impact toughness testing. Steels with ferritic or martensitic structures show a sudden change from ductile (safe) to brittle (unsafe) fracture over a small temperature difference. Even the best of these steels shows this behavior at temperatures higher than -100ºC and in many cases only just below zero. Various types of stainless steel are used across the whole temperature range from ambient to 1100ºC. This book will be useful to scientists, engineers, masters, graduate students, and students. I hope readers will enjoy this book and that it will serve to create new materials with unique properties.

All rights reserved http://oapen.org/content/about-rights

English

There are no comments on this title.

to post a comment.
Share