Amazon cover image
Image from Amazon.com

Cadmium Sources and Toxicity

By: Material type: ArticleArticleLanguage: English Publication details: MDPI - Multidisciplinary Digital Publishing Institute 2019Description: 1 electronic resource (130 p.)ISBN:
  • books978-3-03897-985-2
  • 9783038979852
  • 9783038979845
Subject(s): Online resources: Summary: Cadmium (Cd) is an environmental toxicant of continuing public health concern worldwide, because total diet studies have shown that Cd is present in virtually all foodstuffs. Consequently, foods that are frequently consumed in large quantities, such as rice, potatoes, wheat, leafy salad vegetables, and other cereal crops, are the most significant dietary Cd sources. Moreover, Cd has chemical propensities that confer the potential to interfere with the physiological functions of calcium and zinc. Evidence of a wide range of diverse, toxic effects of Cd is increasingly apparent. In this collection, environmental Cd exposure is linked to an increased risk of chronic kidney disease that is known to be a cause of morbidity and mortality worldwide. Cd is also implicated in an early onset of menarche and deaths from cancer, especially in the uterus, kidney, and urinary tract. Moreover, Cd-induced kidney injury is replicated in Sprague Dawley rats, as is Cd-induced periodontal disease. Experimental studies suggest that the development of kidneys in fetuses and the function of insulin-producing cells may be adversely affected by Cd and that metformin, an anti-diabetic drug, is ineffective in Cd-intoxicated Wistar rats.
Item type:
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Open Access star Unrestricted online access

Cadmium (Cd) is an environmental toxicant of continuing public health concern worldwide, because total diet studies have shown that Cd is present in virtually all foodstuffs. Consequently, foods that are frequently consumed in large quantities, such as rice, potatoes, wheat, leafy salad vegetables, and other cereal crops, are the most significant dietary Cd sources. Moreover, Cd has chemical propensities that confer the potential to interfere with the physiological functions of calcium and zinc. Evidence of a wide range of diverse, toxic effects of Cd is increasingly apparent. In this collection, environmental Cd exposure is linked to an increased risk of chronic kidney disease that is known to be a cause of morbidity and mortality worldwide. Cd is also implicated in an early onset of menarche and deaths from cancer, especially in the uterus, kidney, and urinary tract. Moreover, Cd-induced kidney injury is replicated in Sprague Dawley rats, as is Cd-induced periodontal disease. Experimental studies suggest that the development of kidneys in fetuses and the function of insulin-producing cells may be adversely affected by Cd and that metformin, an anti-diabetic drug, is ineffective in Cd-intoxicated Wistar rats.

Creative Commons https://creativecommons.org/licenses/by-nc-nd/4.0/ cc https://creativecommons.org/licenses/by-nc-nd/4.0/

English

There are no comments on this title.

to post a comment.
Share