000 01690naaaa2200313uu 4500
001 https://directory.doabooks.org/handle/20.500.12854/38491
005 20220219190732.0
020 _a/doi.org/10.1515/9783110481884
020 _a9783110481884
024 7 _ahttps://doi.org/10.1515/9783110481884
_cdoi
041 0 _aEnglish
042 _adc
072 7 _aPBK
_2bicssc
100 1 _aMabrouk, Anouar Ben
_4auth
700 1 _aArfaoui, Sabrine
_4auth
700 1 _aRezgui, Imen
_4auth
245 1 0 _aWavelet Analysis on the Sphere : Spheroidal Wavelets
260 _bDe Gruyter
_c2017
506 0 _aOpen Access
_2star
_fUnrestricted online access
520 _aThe goal of this monograph is to develop the theory of wavelet harmonic analysis on the sphere. By starting with orthogonal polynomials and functional Hilbert spaces on the sphere, the foundations are laid for the study of spherical harmonics such as zonal functions. The book also discusses the construction of wavelet bases using special functions, especially Bessel, Hermite, Tchebychev, and Gegenbauer polynomials.
536 _aKnowledge Unlatched
540 _aCreative Commons
_fhttps://creativecommons.org/licenses/by-nc-nd/4.0/legalcode
_2cc
_4https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode
546 _aEnglish
650 7 _aCalculus & mathematical analysis
_2bicssc
653 _aMathematics
653 _aMathematical Analysis
856 4 0 _awww.oapen.org
_uhttps://library.oapen.org/bitstream/20.500.12657/43808/1/external_content.pdf
_70
_zDOAB: download the publication
856 4 0 _awww.oapen.org
_uhttps://directory.doabooks.org/handle/20.500.12854/38491
_70
_zDOAB: description of the publication
999 _c37485
_d37485