| 000 | 01690naaaa2200313uu 4500 | ||
|---|---|---|---|
| 001 | https://directory.doabooks.org/handle/20.500.12854/38491 | ||
| 005 | 20220219190732.0 | ||
| 020 | _a/doi.org/10.1515/9783110481884 | ||
| 020 | _a9783110481884 | ||
| 024 | 7 |
_ahttps://doi.org/10.1515/9783110481884 _cdoi |
|
| 041 | 0 | _aEnglish | |
| 042 | _adc | ||
| 072 | 7 |
_aPBK _2bicssc |
|
| 100 | 1 |
_aMabrouk, Anouar Ben _4auth |
|
| 700 | 1 |
_aArfaoui, Sabrine _4auth |
|
| 700 | 1 |
_aRezgui, Imen _4auth |
|
| 245 | 1 | 0 | _aWavelet Analysis on the Sphere : Spheroidal Wavelets |
| 260 |
_bDe Gruyter _c2017 |
||
| 506 | 0 |
_aOpen Access _2star _fUnrestricted online access |
|
| 520 | _aThe goal of this monograph is to develop the theory of wavelet harmonic analysis on the sphere. By starting with orthogonal polynomials and functional Hilbert spaces on the sphere, the foundations are laid for the study of spherical harmonics such as zonal functions. The book also discusses the construction of wavelet bases using special functions, especially Bessel, Hermite, Tchebychev, and Gegenbauer polynomials. | ||
| 536 | _aKnowledge Unlatched | ||
| 540 |
_aCreative Commons _fhttps://creativecommons.org/licenses/by-nc-nd/4.0/legalcode _2cc _4https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode |
||
| 546 | _aEnglish | ||
| 650 | 7 |
_aCalculus & mathematical analysis _2bicssc |
|
| 653 | _aMathematics | ||
| 653 | _aMathematical Analysis | ||
| 856 | 4 | 0 |
_awww.oapen.org _uhttps://library.oapen.org/bitstream/20.500.12657/43808/1/external_content.pdf _70 _zDOAB: download the publication |
| 856 | 4 | 0 |
_awww.oapen.org _uhttps://directory.doabooks.org/handle/20.500.12854/38491 _70 _zDOAB: description of the publication |
| 999 |
_c37485 _d37485 |
||