000 06578naaaa2201813uu 4500
001 https://directory.doabooks.org/handle/20.500.12854/45249
005 20220219194956.0
020 _abooks978-3-03928-191-6
020 _a9783039281916
020 _a9783039281909
024 7 _a10.3390/books978-3-03928-191-6
_cdoi
041 0 _aEnglish
042 _adc
100 1 _aGarrido, Angel
_4auth
245 1 0 _aDiscrete Mathematics and Symmetry
260 _bMDPI - Multidisciplinary Digital Publishing Institute
_c2020
300 _a1 electronic resource (458 p.)
506 0 _aOpen Access
_2star
_fUnrestricted online access
520 _aSome of the most beautiful studies in Mathematics are related to Symmetry and Geometry. For this reason, we select here some contributions about such aspects and Discrete Geometry. As we know, Symmetry in a system means invariance of its elements under conditions of transformations. When we consider network structures, symmetry means invariance of adjacency of nodes under the permutations of node set. The graph isomorphism is an equivalence relation on the set of graphs. Therefore, it partitions the class of all graphs into equivalence classes. The underlying idea of isomorphism is that some objects have the same structure if we omit the individual character of their components. A set of graphs isomorphic to each other is denominated as an isomorphism class of graphs. The automorphism of a graph will be an isomorphism from G onto itself. The family of all automorphisms of a graph G is a permutation group.
540 _aCreative Commons
_fhttps://creativecommons.org/licenses/by-nc-nd/4.0/
_2cc
_4https://creativecommons.org/licenses/by-nc-nd/4.0/
546 _aEnglish
653 _asplit-quaternion
653 _aedge even graceful labeling
653 _agraph automorphisms
653 _aring
653 _amulti-state system
653 _aElectric multiple unit trains
653 _ajoin product
653 _anonlinear
653 _aparameter selection
653 _aFuzzy sets
653 _acylinder grid graph
653 _ahigh-level maintenance planning
653 _asplit-octonion
653 _agranularity importance degree
653 _ageometric arithmetic index
653 _a?-convex set
653 _apartition comparison
653 _aoptimization
653 _aautomorphism group
653 _aquantum B-algebra
653 _aquotient algebra
653 _afuzzy normed ring
653 _agraph partitioning
653 _afuzzy normed ideal
653 _aalgorithm
653 _a600-cell
653 _atransmission regular graph
653 _aemergency routes
653 _acyclic associative groupoid (CA-groupoid)
653 _adisjoint holes
653 _aquasi-maximal element
653 _alogical conjunction operation
653 _atime window
653 _athree-way decisions
653 _a2-tuple
653 _aatom-bond connectivity index
653 _aattribute reduction
653 _aorbit matrix
653 _aline graph
653 _aChebyshev polynomials
653 _amulti-granulation rough intuitionistic fuzzy sets
653 _agroup decision making
653 _acyclic permutation
653 _anormed space
653 _acomplexity
653 _abinary polyhedral group
653 _afuzzy implication
653 _aintuitionistic fuzzy sets
653 _a(generalized) distance matrix
653 _adodecahedron
653 _acacti
653 _aisoperimetric number
653 _aquality function deployment
653 _aembedding
653 _amatroid
653 _achaotic system
653 _aKG-union
653 _ainvolution AG-group
653 _atriangular norm
653 _agraph clustering
653 _adistance matrix (spectrum)
653 _afilter
653 _apessimistic (optimistic) multigranulation neutrosophic approximation operators
653 _amaximum
653 _aplanar point set
653 _apseudo-BCI algebra
653 _aneutrosophic rough set
653 _aAbel–Grassmann’s group (AG-group)
653 _adecomposition theorem
653 _asynchronized
653 _arandom graph
653 _astrongly regular graph
653 _aregularization
653 _alinear discrete
653 _aoperator
653 _agenetic algorithm
653 _acommutative group
653 _adistance signlees Laplacian matrix (spectrum)
653 _aconstruction methods
653 _aunicyclic
653 _aselective maintenance
653 _arough set
653 _aedge detection
653 _aco-permanental
653 _agear graph
653 _agraceful labeling
653 _arough intuitionistic fuzzy sets
653 _avariant CA-groupoids
653 _aquasi-alternating BCK-algebra
653 _abicyclic
653 _ahypernear-ring
653 _amulti-granulation
653 _agraph
653 _acrossing number
653 _apyramid graphs
653 _aq-filter
653 _aicosahedron
653 _ageneralized bridge molecular graph
653 _acoefficient
653 _a0–1 programming model
653 _apolar grid graph
653 _afinite automorphism groups
653 _aengineering characteristics
653 _aedge graceful labeling
653 _asocial network
653 _ainvariant measures
653 _aconvex polygon
653 _adominance relation
653 _agood drawing
653 _aspectral radius
653 _alogical disjunction operation
653 _aAbel–Grassmann’s groupoid (AG-groupoid)
653 _ametro station
653 _amultitransformation
653 _aparticle swarm algorithm
653 _aaggregation operator
653 _acancellative
653 _aneutrosophic set
653 _afuzzy logic
653 _ahuman reliability
653 _aperformance evaluation
653 _acomplete lattice
653 _aquadratic polynomial
653 _aDetour–Harary index
653 _aLaplacian operation
653 _afixed point
653 _agraded rough sets
653 _ageneralized permanental polynomial
653 _abasic implication algebra
653 _aintersection graph
856 4 0 _awww.oapen.org
_uhttps://mdpi.com/books/pdfview/book/2061
_70
_zDOAB: download the publication
856 4 0 _awww.oapen.org
_uhttps://directory.doabooks.org/handle/20.500.12854/45249
_70
_zDOAB: description of the publication
999 _c39739
_d39739