| 000 | 06578naaaa2201813uu 4500 | ||
|---|---|---|---|
| 001 | https://directory.doabooks.org/handle/20.500.12854/45249 | ||
| 005 | 20220219194956.0 | ||
| 020 | _abooks978-3-03928-191-6 | ||
| 020 | _a9783039281916 | ||
| 020 | _a9783039281909 | ||
| 024 | 7 |
_a10.3390/books978-3-03928-191-6 _cdoi |
|
| 041 | 0 | _aEnglish | |
| 042 | _adc | ||
| 100 | 1 |
_aGarrido, Angel _4auth |
|
| 245 | 1 | 0 | _aDiscrete Mathematics and Symmetry |
| 260 |
_bMDPI - Multidisciplinary Digital Publishing Institute _c2020 |
||
| 300 | _a1 electronic resource (458 p.) | ||
| 506 | 0 |
_aOpen Access _2star _fUnrestricted online access |
|
| 520 | _aSome of the most beautiful studies in Mathematics are related to Symmetry and Geometry. For this reason, we select here some contributions about such aspects and Discrete Geometry. As we know, Symmetry in a system means invariance of its elements under conditions of transformations. When we consider network structures, symmetry means invariance of adjacency of nodes under the permutations of node set. The graph isomorphism is an equivalence relation on the set of graphs. Therefore, it partitions the class of all graphs into equivalence classes. The underlying idea of isomorphism is that some objects have the same structure if we omit the individual character of their components. A set of graphs isomorphic to each other is denominated as an isomorphism class of graphs. The automorphism of a graph will be an isomorphism from G onto itself. The family of all automorphisms of a graph G is a permutation group. | ||
| 540 |
_aCreative Commons _fhttps://creativecommons.org/licenses/by-nc-nd/4.0/ _2cc _4https://creativecommons.org/licenses/by-nc-nd/4.0/ |
||
| 546 | _aEnglish | ||
| 653 | _asplit-quaternion | ||
| 653 | _aedge even graceful labeling | ||
| 653 | _agraph automorphisms | ||
| 653 | _aring | ||
| 653 | _amulti-state system | ||
| 653 | _aElectric multiple unit trains | ||
| 653 | _ajoin product | ||
| 653 | _anonlinear | ||
| 653 | _aparameter selection | ||
| 653 | _aFuzzy sets | ||
| 653 | _acylinder grid graph | ||
| 653 | _ahigh-level maintenance planning | ||
| 653 | _asplit-octonion | ||
| 653 | _agranularity importance degree | ||
| 653 | _ageometric arithmetic index | ||
| 653 | _a?-convex set | ||
| 653 | _apartition comparison | ||
| 653 | _aoptimization | ||
| 653 | _aautomorphism group | ||
| 653 | _aquantum B-algebra | ||
| 653 | _aquotient algebra | ||
| 653 | _afuzzy normed ring | ||
| 653 | _agraph partitioning | ||
| 653 | _afuzzy normed ideal | ||
| 653 | _aalgorithm | ||
| 653 | _a600-cell | ||
| 653 | _atransmission regular graph | ||
| 653 | _aemergency routes | ||
| 653 | _acyclic associative groupoid (CA-groupoid) | ||
| 653 | _adisjoint holes | ||
| 653 | _aquasi-maximal element | ||
| 653 | _alogical conjunction operation | ||
| 653 | _atime window | ||
| 653 | _athree-way decisions | ||
| 653 | _a2-tuple | ||
| 653 | _aatom-bond connectivity index | ||
| 653 | _aattribute reduction | ||
| 653 | _aorbit matrix | ||
| 653 | _aline graph | ||
| 653 | _aChebyshev polynomials | ||
| 653 | _amulti-granulation rough intuitionistic fuzzy sets | ||
| 653 | _agroup decision making | ||
| 653 | _acyclic permutation | ||
| 653 | _anormed space | ||
| 653 | _acomplexity | ||
| 653 | _abinary polyhedral group | ||
| 653 | _afuzzy implication | ||
| 653 | _aintuitionistic fuzzy sets | ||
| 653 | _a(generalized) distance matrix | ||
| 653 | _adodecahedron | ||
| 653 | _acacti | ||
| 653 | _aisoperimetric number | ||
| 653 | _aquality function deployment | ||
| 653 | _aembedding | ||
| 653 | _amatroid | ||
| 653 | _achaotic system | ||
| 653 | _aKG-union | ||
| 653 | _ainvolution AG-group | ||
| 653 | _atriangular norm | ||
| 653 | _agraph clustering | ||
| 653 | _adistance matrix (spectrum) | ||
| 653 | _afilter | ||
| 653 | _apessimistic (optimistic) multigranulation neutrosophic approximation operators | ||
| 653 | _amaximum | ||
| 653 | _aplanar point set | ||
| 653 | _apseudo-BCI algebra | ||
| 653 | _aneutrosophic rough set | ||
| 653 | _aAbel–Grassmann’s group (AG-group) | ||
| 653 | _adecomposition theorem | ||
| 653 | _asynchronized | ||
| 653 | _arandom graph | ||
| 653 | _astrongly regular graph | ||
| 653 | _aregularization | ||
| 653 | _alinear discrete | ||
| 653 | _aoperator | ||
| 653 | _agenetic algorithm | ||
| 653 | _acommutative group | ||
| 653 | _adistance signlees Laplacian matrix (spectrum) | ||
| 653 | _aconstruction methods | ||
| 653 | _aunicyclic | ||
| 653 | _aselective maintenance | ||
| 653 | _arough set | ||
| 653 | _aedge detection | ||
| 653 | _aco-permanental | ||
| 653 | _agear graph | ||
| 653 | _agraceful labeling | ||
| 653 | _arough intuitionistic fuzzy sets | ||
| 653 | _avariant CA-groupoids | ||
| 653 | _aquasi-alternating BCK-algebra | ||
| 653 | _abicyclic | ||
| 653 | _ahypernear-ring | ||
| 653 | _amulti-granulation | ||
| 653 | _agraph | ||
| 653 | _acrossing number | ||
| 653 | _apyramid graphs | ||
| 653 | _aq-filter | ||
| 653 | _aicosahedron | ||
| 653 | _ageneralized bridge molecular graph | ||
| 653 | _acoefficient | ||
| 653 | _a0–1 programming model | ||
| 653 | _apolar grid graph | ||
| 653 | _afinite automorphism groups | ||
| 653 | _aengineering characteristics | ||
| 653 | _aedge graceful labeling | ||
| 653 | _asocial network | ||
| 653 | _ainvariant measures | ||
| 653 | _aconvex polygon | ||
| 653 | _adominance relation | ||
| 653 | _agood drawing | ||
| 653 | _aspectral radius | ||
| 653 | _alogical disjunction operation | ||
| 653 | _aAbel–Grassmann’s groupoid (AG-groupoid) | ||
| 653 | _ametro station | ||
| 653 | _amultitransformation | ||
| 653 | _aparticle swarm algorithm | ||
| 653 | _aaggregation operator | ||
| 653 | _acancellative | ||
| 653 | _aneutrosophic set | ||
| 653 | _afuzzy logic | ||
| 653 | _ahuman reliability | ||
| 653 | _aperformance evaluation | ||
| 653 | _acomplete lattice | ||
| 653 | _aquadratic polynomial | ||
| 653 | _aDetour–Harary index | ||
| 653 | _aLaplacian operation | ||
| 653 | _afixed point | ||
| 653 | _agraded rough sets | ||
| 653 | _ageneralized permanental polynomial | ||
| 653 | _abasic implication algebra | ||
| 653 | _aintersection graph | ||
| 856 | 4 | 0 |
_awww.oapen.org _uhttps://mdpi.com/books/pdfview/book/2061 _70 _zDOAB: download the publication |
| 856 | 4 | 0 |
_awww.oapen.org _uhttps://directory.doabooks.org/handle/20.500.12854/45249 _70 _zDOAB: description of the publication |
| 999 |
_c39739 _d39739 |
||