| 000 | 01673naaaa2200301uu 4500 | ||
|---|---|---|---|
| 001 | https://directory.doabooks.org/handle/20.500.12854/54766 | ||
| 005 | 20220219201038.0 | ||
| 020 | _aKSP/1000085419 | ||
| 020 | _a9783731508342 | ||
| 024 | 7 |
_a10.5445/KSP/1000085419 _cdoi |
|
| 041 | 0 | _aEnglish | |
| 042 | _adc | ||
| 100 | 1 |
_aKenderi, Gábor _4auth |
|
| 245 | 1 | 0 | _aNonparametric identification of nonlinear dynamic systems |
| 260 |
_bKIT Scientific Publishing _c2018 |
||
| 300 | _a1 electronic resource (XXVIII, 194 p. p.) | ||
| 506 | 0 |
_aOpen Access _2star _fUnrestricted online access |
|
| 520 | _aA nonparametric identification method for highly nonlinear systems is presented that is able to reconstruct the underlying nonlinearities without a priori knowledge of the describing nonlinear functions. The approach is based on nonlinear Kalman Filter algorithms using the well-known state augmentation technique that turns the filter into a dual state and parameter estimator, of which an extension towards nonparametric identification is proposed in the present work. | ||
| 540 |
_aCreative Commons _fhttps://creativecommons.org/licenses/by-sa/4.0/ _2cc _4https://creativecommons.org/licenses/by-sa/4.0/ |
||
| 546 | _aEnglish | ||
| 653 | _anichtlineare dynamische System | ||
| 653 | _aKalman Filter | ||
| 653 | _anonlinear dynamic system | ||
| 653 | _anonparametric identification | ||
| 653 | _anichtparametrische Identifikation | ||
| 856 | 4 | 0 |
_awww.oapen.org _uhttps://www.ksp.kit.edu/9783731508342 _70 _zDOAB: download the publication |
| 856 | 4 | 0 |
_awww.oapen.org _uhttps://directory.doabooks.org/handle/20.500.12854/54766 _70 _zDOAB: description of the publication |
| 999 |
_c40844 _d40844 |
||