000 01673naaaa2200301uu 4500
001 https://directory.doabooks.org/handle/20.500.12854/54766
005 20220219201038.0
020 _aKSP/1000085419
020 _a9783731508342
024 7 _a10.5445/KSP/1000085419
_cdoi
041 0 _aEnglish
042 _adc
100 1 _aKenderi, Gábor
_4auth
245 1 0 _aNonparametric identification of nonlinear dynamic systems
260 _bKIT Scientific Publishing
_c2018
300 _a1 electronic resource (XXVIII, 194 p. p.)
506 0 _aOpen Access
_2star
_fUnrestricted online access
520 _aA nonparametric identification method for highly nonlinear systems is presented that is able to reconstruct the underlying nonlinearities without a priori knowledge of the describing nonlinear functions. The approach is based on nonlinear Kalman Filter algorithms using the well-known state augmentation technique that turns the filter into a dual state and parameter estimator, of which an extension towards nonparametric identification is proposed in the present work.
540 _aCreative Commons
_fhttps://creativecommons.org/licenses/by-sa/4.0/
_2cc
_4https://creativecommons.org/licenses/by-sa/4.0/
546 _aEnglish
653 _anichtlineare dynamische System
653 _aKalman Filter
653 _anonlinear dynamic system
653 _anonparametric identification
653 _anichtparametrische Identifikation
856 4 0 _awww.oapen.org
_uhttps://www.ksp.kit.edu/9783731508342
_70
_zDOAB: download the publication
856 4 0 _awww.oapen.org
_uhttps://directory.doabooks.org/handle/20.500.12854/54766
_70
_zDOAB: description of the publication
999 _c40844
_d40844