| 000 | 04086naaaa2200901uu 4500 | ||
|---|---|---|---|
| 001 | https://directory.doabooks.org/handle/20.500.12854/59669 | ||
| 005 | 20220219202427.0 | ||
| 020 | _abooks978-3-03921-005-3 | ||
| 020 | _a9783039210046 | ||
| 020 | _a9783039210053 | ||
| 024 | 7 |
_a10.3390/books978-3-03921-005-3 _cdoi |
|
| 041 | 0 | _aEnglish | |
| 042 | _adc | ||
| 100 | 1 |
_aKaskaoutis, Dimitris _4auth |
|
| 700 | 1 |
_aPolo, Jesús _4auth |
|
| 245 | 1 | 0 | _aSolar Radiation, Modelling and Remote Sensing |
| 260 |
_bMDPI - Multidisciplinary Digital Publishing Institute _c2019 |
||
| 300 | _a1 electronic resource (230 p.) | ||
| 506 | 0 |
_aOpen Access _2star _fUnrestricted online access |
|
| 520 | _aAccurate solar radiation knowledge and its characterization on the Earth’s surface are of high interest in many aspects of environmental and engineering sciences. Modeling of solar irradiance from satellite imagery has become the most widely used method for retrieving solar irradiance information under total sky conditions, particularly in the solar energy community. Solar radiation modeling, forecasting, and characterization continue to be broad areas of study, research, and development in the scientific community. This Special Issue contains a small sample of the current activities in this field. Both the environmental and climatology community, as the solar energy world, share a great interest in improving modeling tools and capabilities for obtaining more reliable and accurate knowledge of solar irradiance components worldwide. The work presented in this Special Issue also remarks on the significant role that remote sensing technologies play in retrieving and forecasting solar radiation information. | ||
| 540 |
_aCreative Commons _fhttps://creativecommons.org/licenses/by-nc-nd/4.0/ _2cc _4https://creativecommons.org/licenses/by-nc-nd/4.0/ |
||
| 546 | _aEnglish | ||
| 653 | _aPAR | ||
| 653 | _amotion vector field | ||
| 653 | _aradiative transfer | ||
| 653 | _aglobal horizontal irradiance | ||
| 653 | _aevapotranspiration | ||
| 653 | _aHRV | ||
| 653 | _aKato bands | ||
| 653 | _aunderstory light condition | ||
| 653 | _aCalifornia Delta | ||
| 653 | _avalidation | ||
| 653 | _aaerosol impact | ||
| 653 | _aremote sensing | ||
| 653 | _asolar radiation | ||
| 653 | _anowcasting | ||
| 653 | _aIndia | ||
| 653 | _acloud categories | ||
| 653 | _aClouds and the Earth Radiant Energy System (CERES) | ||
| 653 | _abrightness temperature | ||
| 653 | _aHimawari-8/Advanced Meteorological Imager (Himawari-8/AHI) | ||
| 653 | _awater vapor | ||
| 653 | _aclear sky index | ||
| 653 | _awater resource management | ||
| 653 | _abroadband albedo at the top of the atmosphere (TOA albedo) | ||
| 653 | _adata fusion | ||
| 653 | _asolar energy | ||
| 653 | _ashortwave radiation | ||
| 653 | _aAMESIS | ||
| 653 | _asatellite-derived dataset | ||
| 653 | _ainsolation | ||
| 653 | _asolar variability | ||
| 653 | _asubcanopy light regime | ||
| 653 | _aclustering analysis | ||
| 653 | _asolar energy systems | ||
| 653 | _aforest canopy | ||
| 653 | _aradiance | ||
| 653 | _aMSG | ||
| 653 | _aGOES satellites | ||
| 653 | _aradiation model | ||
| 653 | _asolar radiation trends | ||
| 653 | _aclear sky | ||
| 653 | _adownward shortwave radiation | ||
| 653 | _areflected shortwave radiation at the top of the atmosphere (RSR) | ||
| 653 | _aSEVIRI | ||
| 653 | _aphotosynthetically active radiation | ||
| 653 | _asurface solar radiation | ||
| 653 | _asolar irradiance | ||
| 653 | _aearth observation | ||
| 653 | _ahigh turbidity | ||
| 653 | _aGeostationary Korea Multi-Purse Satellite/Advanced Meteorological Imager (GK-2A/AMI) | ||
| 653 | _aSolis scheme | ||
| 653 | _asolar radiation forecasting | ||
| 653 | _asurface energy balance | ||
| 653 | _alight attenuation | ||
| 856 | 4 | 0 |
_awww.oapen.org _uhttps://mdpi.com/books/pdfview/book/1352 _70 _zDOAB: download the publication |
| 856 | 4 | 0 |
_awww.oapen.org _uhttps://directory.doabooks.org/handle/20.500.12854/59669 _70 _zDOAB: description of the publication |
| 999 |
_c41613 _d41613 |
||