000 01678naaaa2200337uu 4500
001 https://directory.doabooks.org/handle/20.500.12854/61453
005 20220219215135.0
020 _aKSP/1000085620
020 _a9783731508427
024 7 _a10.5445/KSP/1000085620
_cdoi
041 0 _aGerman
042 _adc
100 1 _aRichter, Matthias
_4auth
245 1 0 _aÜber lernende optische Inspektion am Beispiel der Schüttgutsortierung
260 _bKIT Scientific Publishing
_c2018
300 _a1 electronic resource (XVI, 283 p. p.)
506 0 _aOpen Access
_2star
_fUnrestricted online access
520 _aAutomated visual inspection is an integral part in industrial manufacturing processes, but development and setup of such systems is very costly. Machine learning significantly reduces the effort of and speeds up both tasks. This work develops several machine learning methods suitable for automated visual inspection. The methods augment each other and can be used for a wide range of products.
540 _aCreative Commons
_fhttps://creativecommons.org/licenses/by-sa/4.0/
_2cc
_4https://creativecommons.org/licenses/by-sa/4.0/
546 _aGerman
653 _aMustererkennung
653 _aSchüttgutsortierung
653 _avisual inspection
653 _aoptische Inspektion
653 _amaschinelles Lernen
653 _aPattern recognition
653 _amachine learning
653 _abulk material soriting
856 4 0 _awww.oapen.org
_uhttps://www.ksp.kit.edu/9783731508427
_70
_zDOAB: download the publication
856 4 0 _awww.oapen.org
_uhttps://directory.doabooks.org/handle/20.500.12854/61453
_70
_zDOAB: description of the publication
999 _c46103
_d46103