| 000 | 01939naaaa2200337uu 4500 | ||
|---|---|---|---|
| 001 | https://directory.doabooks.org/handle/20.500.12854/47993 | ||
| 005 | 20220219222340.0 | ||
| 020 | _aKSP/1000066940 | ||
| 020 | _a9783731506423 | ||
| 024 | 7 |
_a10.5445/KSP/1000066940 _cdoi |
|
| 041 | 0 | _aEnglish | |
| 042 | _adc | ||
| 100 | 1 |
_aJanya-anurak, Chettapong _4auth |
|
| 245 | 1 | 0 | _aFramework for Analysis and Identification of Nonlinear Distributed Parameter Systems using Bayesian Uncertainty Quantification based on Generalized Polynomial Chaos |
| 260 |
_bKIT Scientific Publishing _c2017 |
||
| 300 | _a1 electronic resource (XIX, 210 p. p.) | ||
| 506 | 0 |
_aOpen Access _2star _fUnrestricted online access |
|
| 520 | _aIn this work, the Uncertainty Quantification (UQ) approaches combined systematically to analyze and identify systems. The generalized Polynomial Chaos (gPC) expansion is applied to reduce the computational effort. The framework using gPC based on Bayesian UQ proposed in this work is capable of analyzing the system systematically and reducing the disagreement between the model predictions and the measurements of the real processes to fulfill user defined performance criteria. | ||
| 540 |
_aCreative Commons _fhttps://creativecommons.org/licenses/by-sa/4.0/ _2cc _4https://creativecommons.org/licenses/by-sa/4.0/ |
||
| 546 | _aEnglish | ||
| 653 | _aParameterschätzungUncertainty Quantification | ||
| 653 | _aParameter estimation | ||
| 653 | _averteilt-parametrische Systeme | ||
| 653 | _aSensitivity Analysis | ||
| 653 | _ageneralized polynomial chaos | ||
| 653 | _aDistributed Parameter Systems | ||
| 653 | _aSensitivitätsanalyse | ||
| 653 | _aUnsicherheit Quantifizierung | ||
| 856 | 4 | 0 |
_awww.oapen.org _uhttps://www.ksp.kit.edu/9783731506423 _70 _zDOAB: download the publication |
| 856 | 4 | 0 |
_awww.oapen.org _uhttps://directory.doabooks.org/handle/20.500.12854/47993 _70 _zDOAB: description of the publication |
| 999 |
_c47748 _d47748 |
||