000 01939naaaa2200337uu 4500
001 https://directory.doabooks.org/handle/20.500.12854/47993
005 20220219222340.0
020 _aKSP/1000066940
020 _a9783731506423
024 7 _a10.5445/KSP/1000066940
_cdoi
041 0 _aEnglish
042 _adc
100 1 _aJanya-anurak, Chettapong
_4auth
245 1 0 _aFramework for Analysis and Identification of Nonlinear Distributed Parameter Systems using Bayesian Uncertainty Quantification based on Generalized Polynomial Chaos
260 _bKIT Scientific Publishing
_c2017
300 _a1 electronic resource (XIX, 210 p. p.)
506 0 _aOpen Access
_2star
_fUnrestricted online access
520 _aIn this work, the Uncertainty Quantification (UQ) approaches combined systematically to analyze and identify systems. The generalized Polynomial Chaos (gPC) expansion is applied to reduce the computational effort. The framework using gPC based on Bayesian UQ proposed in this work is capable of analyzing the system systematically and reducing the disagreement between the model predictions and the measurements of the real processes to fulfill user defined performance criteria.
540 _aCreative Commons
_fhttps://creativecommons.org/licenses/by-sa/4.0/
_2cc
_4https://creativecommons.org/licenses/by-sa/4.0/
546 _aEnglish
653 _aParameterschätzungUncertainty Quantification
653 _aParameter estimation
653 _averteilt-parametrische Systeme
653 _aSensitivity Analysis
653 _ageneralized polynomial chaos
653 _aDistributed Parameter Systems
653 _aSensitivitätsanalyse
653 _aUnsicherheit Quantifizierung
856 4 0 _awww.oapen.org
_uhttps://www.ksp.kit.edu/9783731506423
_70
_zDOAB: download the publication
856 4 0 _awww.oapen.org
_uhttps://directory.doabooks.org/handle/20.500.12854/47993
_70
_zDOAB: description of the publication
999 _c47748
_d47748