000 04899naaaa2201093uu 4500
001 https://directory.doabooks.org/handle/20.500.12854/68646
005 20220219222540.0
020 _abooks978-3-03936-011-6
020 _a9783039360109
020 _a9783039360116
024 7 _a10.3390/books978-3-03936-011-6
_cdoi
041 0 _aEnglish
042 _adc
072 7 _aTBX
_2bicssc
100 1 _aSaddow, Stephen Edward
_4edt
700 1 _aAlquier, Daniel
_4edt
700 1 _aWang, Jing
_4edt
700 1 _aLa Via, Francesco
_4edt
700 1 _aFraga, Mariana
_4edt
700 1 _aSaddow, Stephen Edward
_4oth
700 1 _aAlquier, Daniel
_4oth
700 1 _aWang, Jing
_4oth
700 1 _aLa Via, Francesco
_4oth
700 1 _aFraga, Mariana
_4oth
245 1 0 _aSiC based Miniaturized Devices
260 _aBasel, Switzerland
_bMDPI - Multidisciplinary Digital Publishing Institute
_c2020
300 _a1 electronic resource (170 p.)
506 0 _aOpen Access
_2star
_fUnrestricted online access
520 _aMEMS devices are found in many of today’s electronic devices and systems, from air-bag sensors in cars to smart phones, embedded systems, etc. Increasingly, the reduction in dimensions has led to nanometer-scale devices, called NEMS. The plethora of applications on the commercial market speaks for itself, and especially for the highly precise manufacturing of silicon-based MEMS and NEMS. While this is a tremendous achievement, silicon as a material has some drawbacks, mainly in the area of mechanical fatigue and thermal properties. Silicon carbide (SiC), a well-known wide-bandgap semiconductor whose adoption in commercial products is experiening exponential growth, especially in the power electronics arena. While SiC MEMS have been around for decades, in this Special Issue we seek to capture both an overview of the devices that have been demonstrated to date, as well as bring new technologies and progress in the MEMS processing area to the forefront. Thus, this Special Issue seeks to showcase research papers, short communications, and review articles that focus on: (1) novel designs, fabrication, control, and modeling of SiC MEMS and NEMS based on all kinds of actuation mechanisms; and (2) new developments in applying SiC MEMS and NEMS in consumer electronics, optical communications, industry, medicine, agriculture, space, and defense.
540 _aCreative Commons
_fhttps://creativecommons.org/licenses/by/4.0/
_2cc
_4https://creativecommons.org/licenses/by/4.0/
546 _aEnglish
650 7 _aHistory of engineering & technology
_2bicssc
653 _ahigh-power impulse magnetron sputtering (HiPIMS)
653 _asilicon carbide
653 _aaluminum nitride
653 _athin film
653 _aRutherford backscattering spectrometry (RBS)
653 _agrazing incidence X-ray diffraction (GIXRD)
653 _aRaman spectroscopy
653 _a6H-SiC
653 _aindentation
653 _adeformation
653 _amaterial removal mechanisms
653 _acritical load
653 _a4H-SiC
653 _acritical depth of cut
653 _aBerkovich indenter
653 _acleavage strength
653 _ananoscratching
653 _apower electronics
653 _ahigh-temperature converters
653 _aMEMS devices
653 _aSiC power electronic devices
653 _aneural interface
653 _aneural probe
653 _aneural implant
653 _amicroelectrode array
653 _aMEA
653 _aSiC
653 _a3C-SiC
653 _adoped SiC
653 _an-type
653 _ap-type
653 _aamorphous SiC
653 _aepitaxial growth
653 _aelectrochemical characterization
653 _aMESFET
653 _asimulation
653 _aPAE
653 _abulk micromachining
653 _aelectrochemical etching
653 _acircular membrane
653 _abulge test
653 _avibrometry
653 _amechanical properties
653 _aYoung’s modulus
653 _aresidual stress
653 _aFEM
653 _asemiconductor radiation detector
653 _amicrostrip detector
653 _apower module
653 _anegative gate-source voltage spike
653 _a4H-SiC, epitaxial layer
653 _aSchottky barrier
653 _aradiation detector
653 _apoint defects
653 _adeep level transient spectroscopy (DLTS)
653 _athermally stimulated current spectroscopy (TSC)
653 _aelectron beam induced current spectroscopy (EBIC)
653 _apulse height spectroscopy (PHS)
653 _an/a
856 4 0 _awww.oapen.org
_uhttps://mdpi.com/books/pdfview/book/2408
_70
_zDOAB: download the publication
856 4 0 _awww.oapen.org
_uhttps://directory.doabooks.org/handle/20.500.12854/68646
_70
_zDOAB: description of the publication
999 _c47864
_d47864