000 05212naaaa2201333uu 4500
001 https://directory.doabooks.org/handle/20.500.12854/76601
005 20220220025059.0
020 _abooks978-3-0365-1579-3
020 _a9783036515809
020 _a9783036515793
024 7 _a10.3390/books978-3-0365-1579-3
_cdoi
041 0 _aEnglish
042 _adc
072 7 _aGP
_2bicssc
072 7 _aPS
_2bicssc
072 7 _aT
_2bicssc
100 1 _aKujawa, Sebastian
_4edt
700 1 _aNiedbała, Gniewko
_4edt
700 1 _aKujawa, Sebastian
_4oth
700 1 _aNiedbała, Gniewko
_4oth
245 1 0 _aArtificial Neural Networks in Agriculture
260 _aBasel, Switzerland
_bMDPI - Multidisciplinary Digital Publishing Institute
_c2021
300 _a1 electronic resource (283 p.)
506 0 _aOpen Access
_2star
_fUnrestricted online access
520 _aModern agriculture needs to have high production efficiency combined with a high quality of obtained products. This applies to both crop and livestock production. To meet these requirements, advanced methods of data analysis are more and more frequently used, including those derived from artificial intelligence methods. Artificial neural networks (ANNs) are one of the most popular tools of this kind. They are widely used in solving various classification and prediction tasks, for some time also in the broadly defined field of agriculture. They can form part of precision farming and decision support systems. Artificial neural networks can replace the classical methods of modelling many issues, and are one of the main alternatives to classical mathematical models. The spectrum of applications of artificial neural networks is very wide. For a long time now, researchers from all over the world have been using these tools to support agricultural production, making it more efficient and providing the highest-quality products possible.
540 _aCreative Commons
_fhttps://creativecommons.org/licenses/by/4.0/
_2cc
_4https://creativecommons.org/licenses/by/4.0/
546 _aEnglish
650 7 _aResearch & information: general
_2bicssc
650 7 _aBiology, life sciences
_2bicssc
650 7 _aTechnology, engineering, agriculture
_2bicssc
653 _aartificial neural network (ANN)
653 _aGrain weevil identification
653 _aneural modelling classification
653 _awinter wheat
653 _agrain
653 _aartificial neural network
653 _aferulic acid
653 _adeoxynivalenol
653 _anivalenol
653 _aMLP network
653 _asensitivity analysis
653 _aprecision agriculture
653 _amachine learning
653 _asimilarity
653 _ametric
653 _amemory
653 _adeep learning
653 _aplant growth
653 _adynamic response
653 _aroot zone temperature
653 _adynamic model
653 _aNARX neural networks
653 _ahydroponics
653 _avegetation indices
653 _aUAV
653 _aneural network
653 _acorn plant density
653 _acorn canopy cover
653 _ayield prediction
653 _aCLQ
653 _aGA-BPNN
653 _aGPP-driven spectral model
653 _arice phenology
653 _aEBK
653 _acorrelation filter
653 _acrop yield prediction
653 _ahybrid feature extraction
653 _arecursive feature elimination wrapper
653 _aartificial neural networks
653 _abig data
653 _aclassification
653 _ahigh-throughput phenotyping
653 _amodeling
653 _apredicting
653 _atime series forecasting
653 _asoybean
653 _afood production
653 _apaddy rice mapping
653 _adynamic time warping
653 _aLSTM
653 _aweakly supervised learning
653 _acropland mapping
653 _aapparent soil electrical conductivity (ECa)
653 _amagnetic susceptibility (MS)
653 _aEM38
653 _aneural networks
653 _aPhoenix dactylifera L.
653 _aMedjool dates
653 _aimage classification
653 _aconvolutional neural networks
653 _atransfer learning
653 _aaverage degree of coverage
653 _acoverage unevenness coefficient
653 _aoptimization
653 _ahigh-resolution imagery
653 _aoil palm tree
653 _aCNN
653 _aFaster-RCNN
653 _aimage identification
653 _aagroecology
653 _aweeds
653 _ayield gap
653 _aenvironment
653 _ahealth
653 _acrop models
653 _asoil and plant nutrition
653 _aautomated harvesting
653 _amodel application for sustainable agriculture
653 _aremote sensing for agriculture
653 _adecision supporting systems
653 _aneural image analysis
856 4 0 _awww.oapen.org
_uhttps://mdpi.com/books/pdfview/book/4046
_70
_zDOAB: download the publication
856 4 0 _awww.oapen.org
_uhttps://directory.doabooks.org/handle/20.500.12854/76601
_70
_zDOAB: description of the publication
999 _c60536
_d60536