000 03492naaaa2200829uu 4500
001 https://directory.doabooks.org/handle/20.500.12854/48494
005 20220220025128.0
020 _abooks978-3-03928-001-8
020 _a9783039280001
020 _a9783039280018
024 7 _a10.3390/books978-3-03928-001-8
_cdoi
041 0 _aEnglish
042 _adc
100 1 _aKaimakamis, George
_4auth
700 1 _aArvanitoyeorgos, Andreas
_4auth
245 1 0 _aGeometry of Submanifolds and Homogeneous Spaces
260 _bMDPI - Multidisciplinary Digital Publishing Institute
_c2020
300 _a1 electronic resource (128 p.)
506 0 _aOpen Access
_2star
_fUnrestricted online access
520 _aThe present Special Issue of Symmetry is devoted to two important areas of global Riemannian geometry, namely submanifold theory and the geometry of Lie groups and homogeneous spaces. Submanifold theory originated from the classical geometry of curves and surfaces. Homogeneous spaces are manifolds that admit a transitive Lie group action, historically related to F. Klein's Erlangen Program and S. Lie's idea to use continuous symmetries in studying differential equations. In this Special Issue, we provide a collection of papers that not only reflect some of the latest advancements in both areas, but also highlight relations between them and the use of common techniques. Applications to other areas of mathematics are also considered.
540 _aCreative Commons
_fhttps://creativecommons.org/licenses/by-nc-nd/4.0/
_2cc
_4https://creativecommons.org/licenses/by-nc-nd/4.0/
546 _aEnglish
653 _awarped products
653 _avector equilibrium problem
653 _aLaplace operator
653 _acost functional
653 _apointwise 1-type spherical Gauss map
653 _ainequalities
653 _ahomogeneous manifold
653 _afinite-type
653 _amagnetic curves
653 _aSasaki-Einstein
653 _aevolution dynamics
653 _anon-flat complex space forms
653 _ahyperbolic space
653 _acompact Riemannian manifolds
653 _amaximum principle
653 _asubmanifold integral
653 _aClifford torus
653 _aD’Atri space
653 _a3-Sasakian manifold
653 _alinks
653 _aisoparametric hypersurface
653 _aEinstein manifold
653 _areal hypersurfaces
653 _aKähler 2
653 _a*-Weyl curvature tensor
653 _ahomogeneous geodesic
653 _aoptimal control
653 _aformality
653 _ahadamard manifolds
653 _aSasakian Lorentzian manifold
653 _ageneralized convexity
653 _aisospectral manifolds
653 _aLegendre curves
653 _ageodesic chord property
653 _aspherical Gauss map
653 _apointwise bi-slant immersions
653 _amean curvature
653 _aweakly efficient pareto points
653 _ageodesic symmetries
653 _ahomogeneous Finsler space
653 _aorbifolds
653 _aslant curves
653 _ahypersphere
653 _a??-space
653 _ak-D’Atri space
653 _a*-Ricci tensor
653 _ahomogeneous space
856 4 0 _awww.oapen.org
_uhttps://www.mdpi.com/books/pdfview/book/1913
_70
_zDOAB: download the publication
856 4 0 _awww.oapen.org
_uhttps://directory.doabooks.org/handle/20.500.12854/48494
_70
_zDOAB: description of the publication
999 _c60567
_d60567