| 000 | 03492naaaa2200829uu 4500 | ||
|---|---|---|---|
| 001 | https://directory.doabooks.org/handle/20.500.12854/48494 | ||
| 005 | 20220220025128.0 | ||
| 020 | _abooks978-3-03928-001-8 | ||
| 020 | _a9783039280001 | ||
| 020 | _a9783039280018 | ||
| 024 | 7 |
_a10.3390/books978-3-03928-001-8 _cdoi |
|
| 041 | 0 | _aEnglish | |
| 042 | _adc | ||
| 100 | 1 |
_aKaimakamis, George _4auth |
|
| 700 | 1 |
_aArvanitoyeorgos, Andreas _4auth |
|
| 245 | 1 | 0 | _aGeometry of Submanifolds and Homogeneous Spaces |
| 260 |
_bMDPI - Multidisciplinary Digital Publishing Institute _c2020 |
||
| 300 | _a1 electronic resource (128 p.) | ||
| 506 | 0 |
_aOpen Access _2star _fUnrestricted online access |
|
| 520 | _aThe present Special Issue of Symmetry is devoted to two important areas of global Riemannian geometry, namely submanifold theory and the geometry of Lie groups and homogeneous spaces. Submanifold theory originated from the classical geometry of curves and surfaces. Homogeneous spaces are manifolds that admit a transitive Lie group action, historically related to F. Klein's Erlangen Program and S. Lie's idea to use continuous symmetries in studying differential equations. In this Special Issue, we provide a collection of papers that not only reflect some of the latest advancements in both areas, but also highlight relations between them and the use of common techniques. Applications to other areas of mathematics are also considered. | ||
| 540 |
_aCreative Commons _fhttps://creativecommons.org/licenses/by-nc-nd/4.0/ _2cc _4https://creativecommons.org/licenses/by-nc-nd/4.0/ |
||
| 546 | _aEnglish | ||
| 653 | _awarped products | ||
| 653 | _avector equilibrium problem | ||
| 653 | _aLaplace operator | ||
| 653 | _acost functional | ||
| 653 | _apointwise 1-type spherical Gauss map | ||
| 653 | _ainequalities | ||
| 653 | _ahomogeneous manifold | ||
| 653 | _afinite-type | ||
| 653 | _amagnetic curves | ||
| 653 | _aSasaki-Einstein | ||
| 653 | _aevolution dynamics | ||
| 653 | _anon-flat complex space forms | ||
| 653 | _ahyperbolic space | ||
| 653 | _acompact Riemannian manifolds | ||
| 653 | _amaximum principle | ||
| 653 | _asubmanifold integral | ||
| 653 | _aClifford torus | ||
| 653 | _aD’Atri space | ||
| 653 | _a3-Sasakian manifold | ||
| 653 | _alinks | ||
| 653 | _aisoparametric hypersurface | ||
| 653 | _aEinstein manifold | ||
| 653 | _areal hypersurfaces | ||
| 653 | _aKähler 2 | ||
| 653 | _a*-Weyl curvature tensor | ||
| 653 | _ahomogeneous geodesic | ||
| 653 | _aoptimal control | ||
| 653 | _aformality | ||
| 653 | _ahadamard manifolds | ||
| 653 | _aSasakian Lorentzian manifold | ||
| 653 | _ageneralized convexity | ||
| 653 | _aisospectral manifolds | ||
| 653 | _aLegendre curves | ||
| 653 | _ageodesic chord property | ||
| 653 | _aspherical Gauss map | ||
| 653 | _apointwise bi-slant immersions | ||
| 653 | _amean curvature | ||
| 653 | _aweakly efficient pareto points | ||
| 653 | _ageodesic symmetries | ||
| 653 | _ahomogeneous Finsler space | ||
| 653 | _aorbifolds | ||
| 653 | _aslant curves | ||
| 653 | _ahypersphere | ||
| 653 | _a??-space | ||
| 653 | _ak-D’Atri space | ||
| 653 | _a*-Ricci tensor | ||
| 653 | _ahomogeneous space | ||
| 856 | 4 | 0 |
_awww.oapen.org _uhttps://www.mdpi.com/books/pdfview/book/1913 _70 _zDOAB: download the publication |
| 856 | 4 | 0 |
_awww.oapen.org _uhttps://directory.doabooks.org/handle/20.500.12854/48494 _70 _zDOAB: description of the publication |
| 999 |
_c60567 _d60567 |
||