000 01719naaaa2200337uu 4500
001 https://directory.doabooks.org/handle/20.500.12854/53685
005 20220220033448.0
020 _aKSP/1000046300
020 _a9783731503590
024 7 _a10.5445/KSP/1000046300
_cdoi
041 0 _aEnglish
042 _adc
100 1 _aNoorshams, Omar-Qais
_4auth
245 1 0 _aModeling and Prediction of I/O Performance in Virtualized Environments
260 _bKIT Scientific Publishing
_c2017
300 _a1 electronic resource (XVIII, 276 p. p.)
506 0 _aOpen Access
_2star
_fUnrestricted online access
520 _aWe present a novel performance modeling approach tailored to I/O performance prediction in virtualized environments. The main idea is to identify important performance-influencing factors and to develop storage-level I/O performance models. To increase the practical applicability of these models, we combine the low-level I/O performance models with high-level software architecture models. Our approach is validated in a variety of case studies in state-of-the-art, real-world environments.
540 _aCreative Commons
_fhttps://creativecommons.org/licenses/by-sa/4.0/
_2cc
_4https://creativecommons.org/licenses/by-sa/4.0/
546 _aEnglish
653 _aModell
653 _aVorhersage
653 _aPerformanz
653 _aPrediction
653 _aI/O
653 _aVirtualisierungModel
653 _aPerformance
653 _aVirtualization
856 4 0 _awww.oapen.org
_uhttps://www.ksp.kit.edu/9783731503590
_70
_zDOAB: download the publication
856 4 0 _awww.oapen.org
_uhttps://directory.doabooks.org/handle/20.500.12854/53685
_70
_zDOAB: description of the publication
999 _c62669
_d62669