| 000 | 11724naaaa2202941uu 4500 | ||
|---|---|---|---|
| 001 | https://directory.doabooks.org/handle/20.500.12854/40632 | ||
| 005 | 20220220034133.0 | ||
| 020 | _abooks978-3-03897-385-0 | ||
| 020 | _a9783038973843 | ||
| 024 | 7 |
_a10.3390/books978-3-03897-385-0 _cdoi |
|
| 041 | 0 | _aEnglish | |
| 042 | _adc | ||
| 100 | 1 |
_aAli, Mumtaz _4auth |
|
| 700 | 1 |
_aSmarandache, Florentin _4auth |
|
| 700 | 1 |
_aZhang, Xiaohong _4auth |
|
| 245 | 1 | 0 | _aAlgebraic Structures of Neutrosophic Triplets, Neutrosophic Duplets, or Neutrosophic Multisets |
| 260 |
_bMDPI - Multidisciplinary Digital Publishing Institute _c2019 |
||
| 300 | _a1 electronic resource (478 p.) | ||
| 506 | 0 |
_aOpen Access _2star _fUnrestricted online access |
|
| 520 | _aNeutrosophy (1995) is a new branch of philosophy that studies triads of the form (<A>, <neutA>, <antiA>), where <A> is an entity {i.e. element, concept, idea, theory, logical proposition, etc.}, <antiA> is the opposite of <A>, while <neutA> is the neutral (or indeterminate) between them, i.e., neither <A> nor <antiA>.Based on neutrosophy, the neutrosophic triplets were founded, which have a similar form (x, neut(x), anti(x)), that satisfy several axioms, for each element x in a given set.This collective book presents original research papers by many neutrosophic researchers from around the world, that report on the state-of-the-art and recent advancements of neutrosophic triplets, neutrosophic duplets, neutrosophic multisets and their algebraic structures – that have been defined recently in 2016 but have gained interest from world researchers. Connections between classical algebraic structures and neutrosophic triplet / duplet / multiset structures are also studied. And numerous neutrosophic applications in various fields, such as: multi-criteria decision making, image segmentation, medical diagnosis, fault diagnosis, clustering data, neutrosophic probability, human resource management, strategic planning, forecasting model, multi-granulation, supplier selection problems, typhoon disaster evaluation, skin lesson detection, mining algorithm for big data analysis, etc. | ||
| 540 |
_aCreative Commons _fhttps://creativecommons.org/licenses/by-nc-nd/4.0/ _2cc _4https://creativecommons.org/licenses/by-nc-nd/4.0/ |
||
| 546 | _aEnglish | ||
| 653 | _asimilarity measure | ||
| 653 | _ageneralized partitioned Bonferroni mean operator | ||
| 653 | _anormal distribution | ||
| 653 | _aschool administrator | ||
| 653 | _acomplex neutrosophic set | ||
| 653 | _aexpert set | ||
| 653 | _aneutrosophic classification | ||
| 653 | _amulti-attribute decision-making (MADM) | ||
| 653 | _amulti-criteria decision-making (MCDM) techniques | ||
| 653 | _acriterion functions | ||
| 653 | _amatrix representation | ||
| 653 | _apossibility degree | ||
| 653 | _aquantum computation | ||
| 653 | _atyphoon disaster evaluation | ||
| 653 | _aNT-subgroup | ||
| 653 | _ageneralized neutrosophic ideal | ||
| 653 | _athree-way decisions | ||
| 653 | _adecision-making | ||
| 653 | _aG-metric | ||
| 653 | _amultiple attribute group decision-making (MAGDM) | ||
| 653 | _aSVM | ||
| 653 | _asemi-neutrosophic triplets | ||
| 653 | _aLA-semihypergroups | ||
| 653 | _apower operator | ||
| 653 | _afuzzy graph | ||
| 653 | _aneutrosophic cubic graphs | ||
| 653 | _aLNGPBM operator | ||
| 653 | _aneutrosophic c-means clustering | ||
| 653 | _a(commutative) ideal | ||
| 653 | _aregion growing | ||
| 653 | _aclustering algorithm | ||
| 653 | _aNeutrosophic cubic sets | ||
| 653 | _aforecasting | ||
| 653 | _avector similarity measure | ||
| 653 | _atotally dependent-neutrosophic soft set | ||
| 653 | _aFenyves identities | ||
| 653 | _aTODIM model | ||
| 653 | _asimilarity measures | ||
| 653 | _aCI-algebra | ||
| 653 | _aDice measure | ||
| 653 | _ade-neutrosophication methods | ||
| 653 | _aDSmT | ||
| 653 | _asemigroup | ||
| 653 | _aVIKOR model | ||
| 653 | _amultigranulation neutrosophic rough set (MNRS) | ||
| 653 | _asimplified neutrosophic linguistic numbers | ||
| 653 | _aTechnique for Order Preference by Similarity to an Ideal Solution (TOPSIS) | ||
| 653 | _amulti-criteria group decision making | ||
| 653 | _amulti-attribute group decision-making (MAGDM) | ||
| 653 | _aexponential operational laws of interval neutrosophic numbers | ||
| 653 | _asimplified neutrosophic weighted averaging operator | ||
| 653 | _aneutro-epimorphism | ||
| 653 | _aChoquet integral | ||
| 653 | _afixed point theory (FPT) | ||
| 653 | _acomputability | ||
| 653 | _aneutrosophic triplet set | ||
| 653 | _ainterval-valued neutrosophic set | ||
| 653 | _asimplified neutrosophic sets (SNSs) | ||
| 653 | _atotally dependent-neutrosophic set | ||
| 653 | _aMaclaurin symmetric mean | ||
| 653 | _arecursive enumerability | ||
| 653 | _aloop | ||
| 653 | _aphotovoltaic plan | ||
| 653 | _aintersection | ||
| 653 | _aneutrosophic bipolar fuzzy set | ||
| 653 | _abig data | ||
| 653 | _ainclusion relation | ||
| 653 | _adual aggregation operators | ||
| 653 | _aHamming distance | ||
| 653 | _aneutro-automorphism | ||
| 653 | _aneutrosophic set theory | ||
| 653 | _amultiple attribute decision-making | ||
| 653 | _amulticriteria decision-making | ||
| 653 | _apseudo primitive elements | ||
| 653 | _amedical diagnosis | ||
| 653 | _aneutrosophic G-metric | ||
| 653 | _abipolar fuzzy set | ||
| 653 | _aNC power dual MM operator (NCPDMM) operator | ||
| 653 | _aneutrosophic sets (NSs) | ||
| 653 | _aemerging technology commercialization | ||
| 653 | _aneutrosophic triplet groups | ||
| 653 | _aprobabilistic rough sets over two universes | ||
| 653 | _aneutrosophic triplet set (NTS) | ||
| 653 | _aneutrosophic triplet cosets | ||
| 653 | _aMM operator | ||
| 653 | _aTOPSIS | ||
| 653 | _acloud model | ||
| 653 | _aextended ELECTRE III | ||
| 653 | _aextended TOPSIS method | ||
| 653 | _a2ingle-valued neutrosophic set | ||
| 653 | _adual domains | ||
| 653 | _aprobabilistic single-valued (interval) neutrosophic hesitant fuzzy set | ||
| 653 | _aJaccard measure | ||
| 653 | _adata mining | ||
| 653 | _aBE-algebra | ||
| 653 | _aneutrosophic soft set | ||
| 653 | _aaggregation operators | ||
| 653 | _aimage segmentation | ||
| 653 | _amultiple attribute decision making (MADM) | ||
| 653 | _aneutrosophic duplets | ||
| 653 | _afundamental neutro-homomorphism theorem | ||
| 653 | _aneutro-homomorphism | ||
| 653 | _apower aggregation operator | ||
| 653 | _alinear and non-linear neutrosophic number | ||
| 653 | _amulti-attribute decision making | ||
| 653 | _afirst neutro-isomorphism theorem | ||
| 653 | _aMCGDM problems | ||
| 653 | _aneutrosophic bipolar fuzzy weighted averaging operator | ||
| 653 | _aBonferroni mean | ||
| 653 | _aanalytic hierarchy process (AHP) | ||
| 653 | _aquasigroup | ||
| 653 | _aaction learning | ||
| 653 | _aweak commutative neutrosophic triplet group | ||
| 653 | _ageneralized aggregation operators | ||
| 653 | _asingle valued neutrosophic multiset (SVNM) | ||
| 653 | _asustainable supplier selection problems (SSSPs) | ||
| 653 | _aLNGWPBM operator | ||
| 653 | _askin cancer | ||
| 653 | _aoracle computation | ||
| 653 | _afault diagnosis | ||
| 653 | _ainterval valued neutrosophic support soft sets | ||
| 653 | _aneutrosophic triplet normal subgroups | ||
| 653 | _asoft set | ||
| 653 | _amulti-criteria decision-making | ||
| 653 | _aneutrosophic triplet | ||
| 653 | _ageneralized group | ||
| 653 | _aneutrosophic multiset (NM) | ||
| 653 | _atwo universes | ||
| 653 | _aalgorithm | ||
| 653 | _amulti-attribute decision making (MADM) | ||
| 653 | _aPA operator | ||
| 653 | _aBCI-algebra | ||
| 653 | _aneutrosophic triplet group (NTG) | ||
| 653 | _asingle valued trapezoidal neutrosophic number | ||
| 653 | _aquasi neutrosophic triplet loop | ||
| 653 | _aneutrosophy | ||
| 653 | _acomplex neutrosophic graph | ||
| 653 | _aS-semigroup of neutrosophic triplets | ||
| 653 | _aand second neutro-isomorphism theorem | ||
| 653 | _aMADM | ||
| 653 | _adermoscopy | ||
| 653 | _alinguistic neutrosophic sets | ||
| 653 | _adefuzzification | ||
| 653 | _aconstruction project | ||
| 653 | _apotential evaluation | ||
| 653 | _aneutrosophic big data | ||
| 653 | _adecision-making algorithms | ||
| 653 | _aneutosophic extended triplet subgroups | ||
| 653 | _aapplications of neutrosophic cubic graphs | ||
| 653 | _afuzzy time series | ||
| 653 | _aTFNNs VIKOR method | ||
| 653 | _atwo-factor fuzzy logical relationship | ||
| 653 | _aoracle Turing machines | ||
| 653 | _agrasp type | ||
| 653 | _ainterval neutrosophic sets | ||
| 653 | _amulti-criteria group decision-making | ||
| 653 | _ainterval neutrosophic weighted exponential aggregation (INWEA) operator | ||
| 653 | _apower aggregation operators | ||
| 653 | _aneutrosophic triplet group | ||
| 653 | _aMGNRS | ||
| 653 | _a2-tuple linguistic neutrosophic sets (2TLNSs) | ||
| 653 | _acomputation | ||
| 653 | _afilter | ||
| 653 | _amulti-valued neutrosophic set | ||
| 653 | _aintegrated weight | ||
| 653 | _aBol-Moufang | ||
| 653 | _aprioritized operator | ||
| 653 | _ainterval number | ||
| 653 | _alogic | ||
| 653 | _apseudo-BCI algebra | ||
| 653 | _ainterval neutrosophic set (INS) | ||
| 653 | _aneutrosophic rough set | ||
| 653 | _asoft sets | ||
| 653 | _aQ-neutrosophic | ||
| 653 | _aLinguistic neutrosophic sets | ||
| 653 | _afuzzy measure | ||
| 653 | _ahomomorphism theorem | ||
| 653 | _acommutative generalized neutrosophic ideal | ||
| 653 | _aneutrosophic association rule | ||
| 653 | _ashopping mall | ||
| 653 | _adependent degree | ||
| 653 | _aQ-linguistic neutrosophic variable set | ||
| 653 | _aquasi neutrosophic loops | ||
| 653 | _asymmetry | ||
| 653 | _aneutrosophic sets | ||
| 653 | _aneutrosophic logic | ||
| 653 | _aneutrosophic cubic set | ||
| 653 | _acomplement | ||
| 653 | _arobotic dexterous hands | ||
| 653 | _aneutro-monomorphism | ||
| 653 | _agroup | ||
| 653 | _aanalytic network process | ||
| 653 | _aMuirhead mean | ||
| 653 | _amaximizing deviation | ||
| 653 | _aclassical group of neutrosophic triplets | ||
| 653 | _aneutrosophic triplet quotient groups | ||
| 653 | _ageneralized neutrosophic set | ||
| 653 | _amulti-criteria group decision-making (MCGDM) | ||
| 653 | _asupport soft sets | ||
| 653 | _adecision making | ||
| 653 | _ageneralized De Morgan algebra | ||
| 653 | _amultiple attribute group decision making (MAGDM) | ||
| 653 | _asingle-valued neutrosophic multisets | ||
| 653 | _a2TLNNs TODIM method | ||
| 653 | _amembership | ||
| 653 | _agrasping configurations | ||
| 653 | _asingle valued neutrosophic set (SVNS) | ||
| 653 | _amultiple attribute decision making problem | ||
| 653 | _aSWOT analysis | ||
| 653 | _aneutrosophic clustering | ||
| 653 | _ahesitant fuzzy set | ||
| 653 | _ainterval neutrosophic numbers (INNs) | ||
| 653 | _aquasi neutrosophic triplet group | ||
| 653 | _atriangular fuzzy neutrosophic sets (TFNSs) | ||
| 653 | _ainterdependency of criteria | ||
| 653 | _aaggregation operator | ||
| 653 | _acosine measure | ||
| 653 | _aneutrosophic set | ||
| 653 | _aneutrosophic computation | ||
| 653 | _adecision-making trial and evaluation laboratory (DEMATEL) | ||
| 653 | _apartial metric spaces (PMS) | ||
| 653 | _aNCPMM operator | ||
| 653 | _aclustering | ||
| 856 | 4 | 0 |
_awww.oapen.org _uhttps://mdpi.com/books/pdfview/book/1204 _70 _zDOAB: download the publication |
| 856 | 4 | 0 |
_awww.oapen.org _uhttps://directory.doabooks.org/handle/20.500.12854/40632 _70 _zDOAB: description of the publication |
| 999 |
_c62986 _d62986 |
||