000 11724naaaa2202941uu 4500
001 https://directory.doabooks.org/handle/20.500.12854/40632
005 20220220034133.0
020 _abooks978-3-03897-385-0
020 _a9783038973843
024 7 _a10.3390/books978-3-03897-385-0
_cdoi
041 0 _aEnglish
042 _adc
100 1 _aAli, Mumtaz
_4auth
700 1 _aSmarandache, Florentin
_4auth
700 1 _aZhang, Xiaohong
_4auth
245 1 0 _aAlgebraic Structures of Neutrosophic Triplets, Neutrosophic Duplets, or Neutrosophic Multisets
260 _bMDPI - Multidisciplinary Digital Publishing Institute
_c2019
300 _a1 electronic resource (478 p.)
506 0 _aOpen Access
_2star
_fUnrestricted online access
520 _aNeutrosophy (1995) is a new branch of philosophy that studies triads of the form (<A>, <neutA>, <antiA>), where <A> is an entity {i.e. element, concept, idea, theory, logical proposition, etc.}, <antiA> is the opposite of <A>, while <neutA> is the neutral (or indeterminate) between them, i.e., neither <A> nor <antiA>.Based on neutrosophy, the neutrosophic triplets were founded, which have a similar form (x, neut(x), anti(x)), that satisfy several axioms, for each element x in a given set.This collective book presents original research papers by many neutrosophic researchers from around the world, that report on the state-of-the-art and recent advancements of neutrosophic triplets, neutrosophic duplets, neutrosophic multisets and their algebraic structures – that have been defined recently in 2016 but have gained interest from world researchers. Connections between classical algebraic structures and neutrosophic triplet / duplet / multiset structures are also studied. And numerous neutrosophic applications in various fields, such as: multi-criteria decision making, image segmentation, medical diagnosis, fault diagnosis, clustering data, neutrosophic probability, human resource management, strategic planning, forecasting model, multi-granulation, supplier selection problems, typhoon disaster evaluation, skin lesson detection, mining algorithm for big data analysis, etc.
540 _aCreative Commons
_fhttps://creativecommons.org/licenses/by-nc-nd/4.0/
_2cc
_4https://creativecommons.org/licenses/by-nc-nd/4.0/
546 _aEnglish
653 _asimilarity measure
653 _ageneralized partitioned Bonferroni mean operator
653 _anormal distribution
653 _aschool administrator
653 _acomplex neutrosophic set
653 _aexpert set
653 _aneutrosophic classification
653 _amulti-attribute decision-making (MADM)
653 _amulti-criteria decision-making (MCDM) techniques
653 _acriterion functions
653 _amatrix representation
653 _apossibility degree
653 _aquantum computation
653 _atyphoon disaster evaluation
653 _aNT-subgroup
653 _ageneralized neutrosophic ideal
653 _athree-way decisions
653 _adecision-making
653 _aG-metric
653 _amultiple attribute group decision-making (MAGDM)
653 _aSVM
653 _asemi-neutrosophic triplets
653 _aLA-semihypergroups
653 _apower operator
653 _afuzzy graph
653 _aneutrosophic cubic graphs
653 _aLNGPBM operator
653 _aneutrosophic c-means clustering
653 _a(commutative) ideal
653 _aregion growing
653 _aclustering algorithm
653 _aNeutrosophic cubic sets
653 _aforecasting
653 _avector similarity measure
653 _atotally dependent-neutrosophic soft set
653 _aFenyves identities
653 _aTODIM model
653 _asimilarity measures
653 _aCI-algebra
653 _aDice measure
653 _ade-neutrosophication methods
653 _aDSmT
653 _asemigroup
653 _aVIKOR model
653 _amultigranulation neutrosophic rough set (MNRS)
653 _asimplified neutrosophic linguistic numbers
653 _aTechnique for Order Preference by Similarity to an Ideal Solution (TOPSIS)
653 _amulti-criteria group decision making
653 _amulti-attribute group decision-making (MAGDM)
653 _aexponential operational laws of interval neutrosophic numbers
653 _asimplified neutrosophic weighted averaging operator
653 _aneutro-epimorphism
653 _aChoquet integral
653 _afixed point theory (FPT)
653 _acomputability
653 _aneutrosophic triplet set
653 _ainterval-valued neutrosophic set
653 _asimplified neutrosophic sets (SNSs)
653 _atotally dependent-neutrosophic set
653 _aMaclaurin symmetric mean
653 _arecursive enumerability
653 _aloop
653 _aphotovoltaic plan
653 _aintersection
653 _aneutrosophic bipolar fuzzy set
653 _abig data
653 _ainclusion relation
653 _adual aggregation operators
653 _aHamming distance
653 _aneutro-automorphism
653 _aneutrosophic set theory
653 _amultiple attribute decision-making
653 _amulticriteria decision-making
653 _apseudo primitive elements
653 _amedical diagnosis
653 _aneutrosophic G-metric
653 _abipolar fuzzy set
653 _aNC power dual MM operator (NCPDMM) operator
653 _aneutrosophic sets (NSs)
653 _aemerging technology commercialization
653 _aneutrosophic triplet groups
653 _aprobabilistic rough sets over two universes
653 _aneutrosophic triplet set (NTS)
653 _aneutrosophic triplet cosets
653 _aMM operator
653 _aTOPSIS
653 _acloud model
653 _aextended ELECTRE III
653 _aextended TOPSIS method
653 _a2ingle-valued neutrosophic set
653 _adual domains
653 _aprobabilistic single-valued (interval) neutrosophic hesitant fuzzy set
653 _aJaccard measure
653 _adata mining
653 _aBE-algebra
653 _aneutrosophic soft set
653 _aaggregation operators
653 _aimage segmentation
653 _amultiple attribute decision making (MADM)
653 _aneutrosophic duplets
653 _afundamental neutro-homomorphism theorem
653 _aneutro-homomorphism
653 _apower aggregation operator
653 _alinear and non-linear neutrosophic number
653 _amulti-attribute decision making
653 _afirst neutro-isomorphism theorem
653 _aMCGDM problems
653 _aneutrosophic bipolar fuzzy weighted averaging operator
653 _aBonferroni mean
653 _aanalytic hierarchy process (AHP)
653 _aquasigroup
653 _aaction learning
653 _aweak commutative neutrosophic triplet group
653 _ageneralized aggregation operators
653 _asingle valued neutrosophic multiset (SVNM)
653 _asustainable supplier selection problems (SSSPs)
653 _aLNGWPBM operator
653 _askin cancer
653 _aoracle computation
653 _afault diagnosis
653 _ainterval valued neutrosophic support soft sets
653 _aneutrosophic triplet normal subgroups
653 _asoft set
653 _amulti-criteria decision-making
653 _aneutrosophic triplet
653 _ageneralized group
653 _aneutrosophic multiset (NM)
653 _atwo universes
653 _aalgorithm
653 _amulti-attribute decision making (MADM)
653 _aPA operator
653 _aBCI-algebra
653 _aneutrosophic triplet group (NTG)
653 _asingle valued trapezoidal neutrosophic number
653 _aquasi neutrosophic triplet loop
653 _aneutrosophy
653 _acomplex neutrosophic graph
653 _aS-semigroup of neutrosophic triplets
653 _aand second neutro-isomorphism theorem
653 _aMADM
653 _adermoscopy
653 _alinguistic neutrosophic sets
653 _adefuzzification
653 _aconstruction project
653 _apotential evaluation
653 _aneutrosophic big data
653 _adecision-making algorithms
653 _aneutosophic extended triplet subgroups
653 _aapplications of neutrosophic cubic graphs
653 _afuzzy time series
653 _aTFNNs VIKOR method
653 _atwo-factor fuzzy logical relationship
653 _aoracle Turing machines
653 _agrasp type
653 _ainterval neutrosophic sets
653 _amulti-criteria group decision-making
653 _ainterval neutrosophic weighted exponential aggregation (INWEA) operator
653 _apower aggregation operators
653 _aneutrosophic triplet group
653 _aMGNRS
653 _a2-tuple linguistic neutrosophic sets (2TLNSs)
653 _acomputation
653 _afilter
653 _amulti-valued neutrosophic set
653 _aintegrated weight
653 _aBol-Moufang
653 _aprioritized operator
653 _ainterval number
653 _alogic
653 _apseudo-BCI algebra
653 _ainterval neutrosophic set (INS)
653 _aneutrosophic rough set
653 _asoft sets
653 _aQ-neutrosophic
653 _aLinguistic neutrosophic sets
653 _afuzzy measure
653 _ahomomorphism theorem
653 _acommutative generalized neutrosophic ideal
653 _aneutrosophic association rule
653 _ashopping mall
653 _adependent degree
653 _aQ-linguistic neutrosophic variable set
653 _aquasi neutrosophic loops
653 _asymmetry
653 _aneutrosophic sets
653 _aneutrosophic logic
653 _aneutrosophic cubic set
653 _acomplement
653 _arobotic dexterous hands
653 _aneutro-monomorphism
653 _agroup
653 _aanalytic network process
653 _aMuirhead mean
653 _amaximizing deviation
653 _aclassical group of neutrosophic triplets
653 _aneutrosophic triplet quotient groups
653 _ageneralized neutrosophic set
653 _amulti-criteria group decision-making (MCGDM)
653 _asupport soft sets
653 _adecision making
653 _ageneralized De Morgan algebra
653 _amultiple attribute group decision making (MAGDM)
653 _asingle-valued neutrosophic multisets
653 _a2TLNNs TODIM method
653 _amembership
653 _agrasping configurations
653 _asingle valued neutrosophic set (SVNS)
653 _amultiple attribute decision making problem
653 _aSWOT analysis
653 _aneutrosophic clustering
653 _ahesitant fuzzy set
653 _ainterval neutrosophic numbers (INNs)
653 _aquasi neutrosophic triplet group
653 _atriangular fuzzy neutrosophic sets (TFNSs)
653 _ainterdependency of criteria
653 _aaggregation operator
653 _acosine measure
653 _aneutrosophic set
653 _aneutrosophic computation
653 _adecision-making trial and evaluation laboratory (DEMATEL)
653 _apartial metric spaces (PMS)
653 _aNCPMM operator
653 _aclustering
856 4 0 _awww.oapen.org
_uhttps://mdpi.com/books/pdfview/book/1204
_70
_zDOAB: download the publication
856 4 0 _awww.oapen.org
_uhttps://directory.doabooks.org/handle/20.500.12854/40632
_70
_zDOAB: description of the publication
999 _c62986
_d62986