000 04833naaaa2201057uu 4500
001 https://directory.doabooks.org/handle/20.500.12854/68282
005 20220220045323.0
020 _abooks978-3-03943-722-1
020 _a9783039437214
020 _a9783039437221
024 7 _a10.3390/books978-3-03943-722-1
_cdoi
041 0 _aEnglish
042 _adc
072 7 _aTB
_2bicssc
100 1 _aSirleto, Luigi
_4edt
700 1 _aRighini, Giancarlo C.
_4edt
700 1 _aSirleto, Luigi
_4oth
700 1 _aRighini, Giancarlo C.
_4oth
245 1 0 _aNonlinear Photonics Devices
260 _aBasel, Switzerland
_bMDPI - Multidisciplinary Digital Publishing Institute
_c2021
300 _a1 electronic resource (212 p.)
506 0 _aOpen Access
_2star
_fUnrestricted online access
520 _aThe first nonlinear optical effect was observed in the 19th century by John Kerr. Nonlinear optics, however, started to grow up only after the invention of the laser, when intense light sources became easily available. The seminal studies by Peter Franken and Nicolaas Bloembergen, in the 1960s, paved the way for the development of today’s nonlinear photonics, the field of research that encompasses all the studies, designs, and implementations of nonlinear optical devices that can be used for the generation, communication, and processing of information. This field has attracted significant attention, partly due to the great potential of exploiting the optical nonlinearities of new or advanced materials to induce new phenomena and achieve new functions. According to Clarivate Web of Science, almost 200,000 papers were published that refer to the topic “nonlinear optic*”. Over 36,000 papers were published in the last four years (2015–2018) with the same keyword, and over 17,000 used the keyword “nonlinear photonic*”. The present Special Issue of Micromachines aims at reviewing the current state of the art and presenting perspectives of further development. Fundamental and applicative aspects are considered, with special attention paid to hot topics that may lead to technological and scientific breakthroughs.
540 _aCreative Commons
_fhttps://creativecommons.org/licenses/by/4.0/
_2cc
_4https://creativecommons.org/licenses/by/4.0/
546 _aEnglish
650 7 _aTechnology: general issues
_2bicssc
653 _aGeSn
653 _aquantum dot
653 _aelectric field
653 _aintersubband nonlinear optics
653 _aabsorption coefficients
653 _arefractive index changes
653 _apure state
653 _acascaded spontaneous parametric down-conversion (SPDC)
653 _anumerical simulation
653 _atransparent conductive oxide
653 _acoherent perfect absorption
653 _aepsilon-near-zero media
653 _alight-with-light modulation
653 _arefractive index change
653 _anon-linear photonics
653 _aoptical fibers
653 _athermal poling
653 _anumerical analysis
653 _aextrinsic chirality
653 _asecond harmonic generation
653 _aGaAs nanowires
653 _aplasmonic coating
653 _asecond-harmonic generation
653 _awaveguide
653 _aAlGaAs
653 _aoptical frequency combs
653 _aquadratic nonlinearity
653 _aoptical parametric oscillator
653 _amodulation instability
653 _astimulated raman scattering
653 _afiber optics
653 _aamplifiers
653 _alasers
653 _aoptical communication systems
653 _akerr nonlinearity
653 _awhispering gallery mode
653 _aoptical resonators
653 _astimulated brillouin scattering
653 _aoptomechanical oscillations
653 _anonlinear optics
653 _astimulated Raman scattering
653 _amicrophotonics
653 _ananophotonics
653 _anonlinear waveguide
653 _aoptical microcavity
653 _aphotonics crystals
653 _ananocrystals
653 _aoptical resonances
653 _aharmonic generation
653 _afour-wave mixing
653 _aoptical switching
653 _asub-wavelength gratings
653 _aMie scattering
653 _aFano resonances
653 _aguided-mode resonance
653 _aterahertz
653 _anonlinear optical conversion
653 _acomplex optical systems
653 _aadaptive imaging
653 _asingle-pixel imaging
653 _asurface nonlinear photonics
653 _an/a
856 4 0 _awww.oapen.org
_uhttps://mdpi.com/books/pdfview/book/3291
_70
_zDOAB: download the publication
856 4 0 _awww.oapen.org
_uhttps://directory.doabooks.org/handle/20.500.12854/68282
_70
_zDOAB: description of the publication
999 _c66255
_d66255