| 000 | 05176naaaa2201297uu 4500 | ||
|---|---|---|---|
| 001 | https://directory.doabooks.org/handle/20.500.12854/43351 | ||
| 005 | 20220220052507.0 | ||
| 020 | _abooks978-3-03921-631-4 | ||
| 020 | _a9783039216307 | ||
| 020 | _a9783039216314 | ||
| 024 | 7 |
_a10.3390/books978-3-03921-631-4 _cdoi |
|
| 041 | 0 | _aEnglish | |
| 042 | _adc | ||
| 100 | 1 |
_aSrinivasan, Sesha _4auth |
|
| 700 | 1 |
_aStefanakos, Elias _4auth |
|
| 245 | 1 | 0 | _aClean Energy and Fuel (Hydrogen) Storage |
| 260 |
_bMDPI - Multidisciplinary Digital Publishing Institute _c2019 |
||
| 300 | _a1 electronic resource (278 p.) | ||
| 506 | 0 |
_aOpen Access _2star _fUnrestricted online access |
|
| 520 | _aClean energy and fuel storage are often required for both stationary and automotive applications. Some of these clean energy and fuel storage technologies currently under extensive research and development include hydrogen storage, direct electric storage, mechanical energy storage, solar–thermal energy storage, electrochemical (batteries and supercapacitors), and thermochemical storage. The gravimetric and volumetric storage capacity, energy storage density, power output, operating temperature and pressure, cycle life, recyclability, and cost of clean energy or fuel storage are some of the factors that govern efficient energy and fuel storage technologies for potential deployment in energy harvesting (solar and wind farms) stations and onboard vehicular transportation. This Special Issue thus serves the need for promoting exploratory research and development on clean energy and fuel storage technologies while addressing their challenges to practical and sustainable infrastructures. | ||
| 540 |
_aCreative Commons _fhttps://creativecommons.org/licenses/by-nc-nd/4.0/ _2cc _4https://creativecommons.org/licenses/by-nc-nd/4.0/ |
||
| 546 | _aEnglish | ||
| 653 | _aMgH2 | ||
| 653 | _avertically oriented graphene | ||
| 653 | _agas loss | ||
| 653 | _aconcentrated solar power (CSP) | ||
| 653 | _acomplex hydrides | ||
| 653 | _aPCM roof | ||
| 653 | _ahydrogen storage systems | ||
| 653 | _aslag | ||
| 653 | _abubbles transportation | ||
| 653 | _adye-sensitized solar cells | ||
| 653 | _aundercooling | ||
| 653 | _amethanogenesis | ||
| 653 | _aelectrochemical energy storage | ||
| 653 | _ahydrogen storage | ||
| 653 | _aFischer–Tropsch | ||
| 653 | _astate of charge estimator | ||
| 653 | _agas turbine engine | ||
| 653 | _asimplified electrochemical model | ||
| 653 | _ahot summer and cold winter area | ||
| 653 | _arock permeability | ||
| 653 | _aflutter instability | ||
| 653 | _acharge density | ||
| 653 | _abinder | ||
| 653 | _asalt cavern energy storage | ||
| 653 | _abattery energy storage system | ||
| 653 | _acapacitance | ||
| 653 | _aLiNH2 | ||
| 653 | _aball milling | ||
| 653 | _aproduction rate | ||
| 653 | _aleaching tubing | ||
| 653 | _aquality function deployment (QFD) | ||
| 653 | _ananocatalyst | ||
| 653 | _alab-scale | ||
| 653 | _athermal energy storage (TES) | ||
| 653 | _acomprehensive incremental benefit | ||
| 653 | _alean direct injection | ||
| 653 | _aLi-ion batteries | ||
| 653 | _aseparator | ||
| 653 | _afour-point | ||
| 653 | _asalt cavern | ||
| 653 | _alow emissions combustion | ||
| 653 | _aionic liquid | ||
| 653 | _acarbon materials | ||
| 653 | _ananocomposite materials | ||
| 653 | _aelectrical double layers | ||
| 653 | _arecovery factor | ||
| 653 | _athermochemical energy storage | ||
| 653 | _aKlinkenberg method | ||
| 653 | _aflow-induced vibration | ||
| 653 | _acathode | ||
| 653 | _aporous media | ||
| 653 | _ametal hydride | ||
| 653 | _aaquifer size | ||
| 653 | _adiffusion | ||
| 653 | _aauxiliary services compensation | ||
| 653 | _awater invasion | ||
| 653 | _aconjugate phase change heat transfer | ||
| 653 | _aheat transfer enhancement | ||
| 653 | _afailure mode and effect analysis (FMEA) | ||
| 653 | _amagnetism | ||
| 653 | _acarbonate gas reservoirs | ||
| 653 | _aequivalent loss of cycle life | ||
| 653 | _ainternal and reverse external axial flows | ||
| 653 | _athermal energy storage | ||
| 653 | _alithium-ion batteries | ||
| 653 | _abacterial sulfate reduction | ||
| 653 | _acrystal growth rates | ||
| 653 | _aoptimal capacity | ||
| 653 | _agas storage | ||
| 653 | _aenergy discharge | ||
| 653 | _aanode | ||
| 653 | _aAg nanoparticles | ||
| 653 | _aregenerator | ||
| 653 | _ahydrogen absorption | ||
| 653 | _afreestanding TiO2 nanotube arrays | ||
| 653 | _amaterial science | ||
| 653 | _aextended kalman filter | ||
| 653 | _areactive transport modeling | ||
| 653 | _asynthetic rock salt testing | ||
| 653 | _ahydrogen energy storage | ||
| 653 | _alattice Boltzmann method | ||
| 653 | _adynamic modeling | ||
| 653 | _abubbles burst | ||
| 653 | _aPower to Liquid | ||
| 653 | _alarge-scale wind farm | ||
| 653 | _aPHREEQC | ||
| 856 | 4 | 0 |
_awww.oapen.org _uhttps://mdpi.com/books/pdfview/book/1711 _70 _zDOAB: download the publication |
| 856 | 4 | 0 |
_awww.oapen.org _uhttps://directory.doabooks.org/handle/20.500.12854/43351 _70 _zDOAB: description of the publication |
| 999 |
_c67745 _d67745 |
||