000 04379naaaa2201033uu 4500
001 https://directory.doabooks.org/handle/20.500.12854/58591
005 20220220053056.0
020 _abooks978-3-03928-731-4
020 _a9783039287307
020 _a9783039287314
024 7 _a10.3390/books978-3-03928-731-4
_cdoi
041 0 _aEnglish
042 _adc
100 1 _aMillar, Anthony
_4auth
245 1 0 _aThe Role of MicroRNAs in Plants
260 _bMDPI - Multidisciplinary Digital Publishing Institute
_c2020
300 _a1 electronic resource (174 p.)
506 0 _aOpen Access
_2star
_fUnrestricted online access
520 _aDiscovered in plants at the turn of the century, microRNAs (miRNAs) have been found to be fundamental to many aspects of plant biology. These small (20–24 nt) regulatory RNAs are derived via processing from longer imperfect double-stranded RNAs. They are then incorporated into silencing complexes, which they guide to (m)RNAs of high sequence complementarity, resulting in gene silencing outcomes, either via RNA degradation and/or translational inhibition. Some miRNAs are ancient, being present in all species of land plants and controlling fundamental processes such as phase change, organ polarity, flowering, and leaf and root development. However, there are many more miRNAs that are much less conserved and with less understood functions. This Special Issue contains seven research papers that span from understanding the function of a single miRNA family to examining how the miRNA profiles alter during abiotic stress or nutrient deficiency. The possibility of circular RNAs in plants acting as miRNA decoys to inhibit miRNA function is investigated, as was the hierarchical roles of miRNA biogenesis factors in the maintenance of phosphate homeostasis. Three reviews cover the potential of miRNAs for agronomic improvement of maize, the role of miRNA-triggered secondary small RNAs in plants, and the potential function of an ancient plant miRNA.
540 _aCreative Commons
_fhttps://creativecommons.org/licenses/by-nc-nd/4.0/
_2cc
_4https://creativecommons.org/licenses/by-nc-nd/4.0/
546 _aEnglish
653 _amicroRNAs
653 _aabiotic stress
653 _aArabidopsis thaliana
653 _aheat stress
653 _aphotosynthesis
653 _amaize (Zea mays L.)
653 _aimmunoprecipitation
653 _atapetum
653 _aresurrection plants
653 _aplastocyanin
653 _adehydration
653 _aTripogon loliiformis
653 _asecondary siRNA
653 _aRT-qPCR
653 _aputrescine
653 _aDRB2
653 _aphosphate (PO4) stress
653 _aargonaute
653 _adevelopment
653 _amiR399-directed PHO2 expression regulation
653 _acircRNA
653 _aSolanum lycopersicum
653 _acopper deficiency
653 _asalt stress
653 _aDOUBLE-STRANDED RNA BINDING (DRB) proteins DRB1
653 _aP5CS
653 _aproline
653 _aphasiRNA
653 _adrought stress
653 _aagronomic traits
653 _aColorado potato beetle
653 _aCu-microRNA
653 _aplant
653 _amiR171
653 _aSTTM
653 _aaleurone
653 _aPHOSPHATE2 (PHO2)
653 _avegetative growth
653 _anutrient availability
653 _amiRNAs
653 _anon-coding RNA
653 _apollen
653 _atomato
653 _aflowering
653 _acrop improvement
653 _acallose
653 _amiRNA target gene expression
653 _acircular RNAs
653 _amiRNA
653 _aprogrammed cell death
653 _aDRB4
653 _amicroRNA (miRNA)
653 _atarget mimicry
653 _aMYB transcription factors
653 _apost-transcriptional gene silencing
653 _adesiccation
653 _amiR399
653 _amiR159
653 _acopper protein
653 _adrought
653 _amicroRNAs (miRNAs)
653 _amicroRNA
653 _aGAMYB
653 _atasiRNA
653 _aphosphorous (P)
856 4 0 _awww.oapen.org
_uhttps://mdpi.com/books/pdfview/book/2324
_70
_zDOAB: download the publication
856 4 0 _awww.oapen.org
_uhttps://directory.doabooks.org/handle/20.500.12854/58591
_70
_zDOAB: description of the publication
999 _c68024
_d68024