| 000 | 04062naaaa2201045uu 4500 | ||
|---|---|---|---|
| 001 | https://directory.doabooks.org/handle/20.500.12854/69377 | ||
| 005 | 20220220064301.0 | ||
| 020 | _abooks978-3-03943-730-6 | ||
| 020 | _a9783039437290 | ||
| 020 | _a9783039437306 | ||
| 024 | 7 |
_a10.3390/books978-3-03943-730-6 _cdoi |
|
| 041 | 0 | _aEnglish | |
| 042 | _adc | ||
| 072 | 7 |
_aTBX _2bicssc |
|
| 100 | 1 |
_aCampagnolo, Alberto _4edt |
|
| 700 | 1 |
_aCampagnolo, Alberto _4oth |
|
| 245 | 1 | 0 | _aFracture and Fatigue Assessments of Structural Components |
| 260 |
_aBasel, Switzerland _bMDPI - Multidisciplinary Digital Publishing Institute _c2020 |
||
| 300 | _a1 electronic resource (186 p.) | ||
| 506 | 0 |
_aOpen Access _2star _fUnrestricted online access |
|
| 520 | _aIn dealing with fracture and fatigue assessments of structural components, different approaches have been proposed in the literature. They are usually divided into three subgroups according to stress-based, strain-based, and energy-based criteria. Typical applications include both linear elastic and elastoplastic materials and plain and notched or cracked components under both static and fatigue loadings. The aim of this Special Issue is to provide an update to the state-of-the-art on these approaches. The topics addressed in this Special Issue are applications from nano- to full-scale complex and real structures and recent advanced criteria for fracture and fatigue predictions under complex loading conditions, such as multiaxial constant and variable amplitude fatigue loadings. | ||
| 540 |
_aCreative Commons _fhttps://creativecommons.org/licenses/by/4.0/ _2cc _4https://creativecommons.org/licenses/by/4.0/ |
||
| 546 | _aEnglish | ||
| 650 | 7 |
_aHistory of engineering & technology _2bicssc |
|
| 653 | _afatigue life prediction | ||
| 653 | _adissipated energy | ||
| 653 | _athermo-graphic technique | ||
| 653 | _athermal evolution | ||
| 653 | _aperidynamics | ||
| 653 | _acomposite | ||
| 653 | _aordinary state-based | ||
| 653 | _adouble cantilever composite beam (DCB) | ||
| 653 | _adelamination | ||
| 653 | _acontrol volume concept | ||
| 653 | _acritical plane approach | ||
| 653 | _afatigue life assessment | ||
| 653 | _aseverely notched specimens | ||
| 653 | _astrain energy density | ||
| 653 | _amonitoring of fatigue crack | ||
| 653 | _adamage index | ||
| 653 | _aultrasonic guided waves | ||
| 653 | _asensor network | ||
| 653 | _astructural health monitoring | ||
| 653 | _athermal fatigue | ||
| 653 | _athermal barrier coat | ||
| 653 | _amaster–slave model | ||
| 653 | _alife prediction | ||
| 653 | _anozzle guide vane | ||
| 653 | _amicrocracks | ||
| 653 | _amultiple fatigue crack | ||
| 653 | _acrack coalescence | ||
| 653 | _aconcrete beams | ||
| 653 | _adamage evolution | ||
| 653 | _amultiscale | ||
| 653 | _afatigue damage evolution | ||
| 653 | _aABAQUS subroutine | ||
| 653 | _a3D reconstruction | ||
| 653 | _aMCT scanning | ||
| 653 | _afatigue life | ||
| 653 | _acleat filler | ||
| 653 | _abroken coal seam | ||
| 653 | _awellbore stability | ||
| 653 | _aanalytical model | ||
| 653 | _aaffecting factors | ||
| 653 | _afatigue crack | ||
| 653 | _awelded bogie frame | ||
| 653 | _awheel polygon | ||
| 653 | _arail corrugation | ||
| 653 | _arunning speed | ||
| 653 | _afinite fracture mechanics | ||
| 653 | _ananoscale | ||
| 653 | _asilicon | ||
| 653 | _abrittle | ||
| 653 | _anotch | ||
| 653 | _afracture | ||
| 653 | _ananodevice | ||
| 653 | _alife assessment | ||
| 653 | _acrack initiation | ||
| 653 | _acrack propagation | ||
| 653 | _afinite element method | ||
| 653 | _ascroll compressor | ||
| 653 | _afatigue | ||
| 653 | _acrack | ||
| 653 | _ametal | ||
| 653 | _astructure | ||
| 653 | _awelded joint | ||
| 653 | _aFEM | ||
| 856 | 4 | 0 |
_awww.oapen.org _uhttps://mdpi.com/books/pdfview/book/3170 _70 _zDOAB: download the publication |
| 856 | 4 | 0 |
_awww.oapen.org _uhttps://directory.doabooks.org/handle/20.500.12854/69377 _70 _zDOAB: description of the publication |
| 999 |
_c71285 _d71285 |
||