000 01780naaaa2200361uu 4500
001 https://directory.doabooks.org/handle/20.500.12854/50183
005 20220220065131.0
020 _aKSP/1000073704
020 _a9783731507215
024 7 _a10.5445/KSP/1000073704
_cdoi
041 0 _aGerman
042 _adc
100 1 _aRuhhammer, Christian
_4auth
245 1 0 _aInferenz von Kreuzungsinformationen aus Flottendaten
260 _bKIT Scientific Publishing
_c2017
300 _a1 electronic resource (XIX, 171 p. p.)
506 0 _aOpen Access
_2star
_fUnrestricted online access
520 _aThe next generation of driver assistance systems and highly automated driving functions are based on digital maps. In order to meet the high requirements on the correctness and up-to-dateness of this information, this work presents new automated methods to extract up-to-date map information from fleet data. The focus is on the inference of static intersection information from fleet data through machine learning and statistical methods.
540 _aCreative Commons
_fhttps://creativecommons.org/licenses/by-sa/4.0/
_2cc
_4https://creativecommons.org/licenses/by-sa/4.0/
546 _aGerman
653 _aMaschinelles Lernen
653 _aFlottendaten
653 _aIntersection Information
653 _aLichtsignalanlage
653 _aAutomated Map Creation
653 _aFleet Data
653 _aTraffic Light
653 _aAutomatisierte Kartenerstellung
653 _aKreuzungsinformationen
653 _aMachine Learning
856 4 0 _awww.oapen.org
_uhttps://www.ksp.kit.edu/9783731507215
_70
_zDOAB: download the publication
856 4 0 _awww.oapen.org
_uhttps://directory.doabooks.org/handle/20.500.12854/50183
_70
_zDOAB: description of the publication
999 _c71649
_d71649