000 04921naaaa2201141uu 4500
001 https://directory.doabooks.org/handle/20.500.12854/69339
005 20220220071407.0
020 _abooks978-3-03943-455-8
020 _a9783039434541
020 _a9783039434558
024 7 _a10.3390/books978-3-03943-455-8
_cdoi
041 0 _aEnglish
042 _adc
072 7 _aKNTX
_2bicssc
100 1 _aCaraffini, Fabio
_4edt
700 1 _aSantucci, Valentino
_4edt
700 1 _aMilani, Alfredo
_4edt
700 1 _aCaraffini, Fabio
_4oth
700 1 _aSantucci, Valentino
_4oth
700 1 _aMilani, Alfredo
_4oth
245 1 0 _aEvolutionary Computation & Swarm Intelligence
260 _aBasel, Switzerland
_bMDPI - Multidisciplinary Digital Publishing Institute
_c2020
300 _a1 electronic resource (286 p.)
506 0 _aOpen Access
_2star
_fUnrestricted online access
520 _aThe vast majority of real-world problems can be expressed as an optimisation task by formulating an objective function, also known as cost or fitness function. The most logical methods to optimise such a function when (1) an analytical expression is not available, (2) mathematical hypotheses do not hold, and (3) the dimensionality of the problem or stringent real-time requirements make it infeasible to find an exact solution mathematically are from the field of Evolutionary Computation (EC) and Swarm Intelligence (SI). The latter are broad and still growing subjects in Computer Science in the study of metaheuristic approaches, i.e., those approaches which do not make any assumptions about the problem function, inspired from natural phenomena such as, in the first place, the evolution process and the collaborative behaviours of groups of animals and communities, respectively. This book contains recent advances in the EC and SI fields, covering most themes currently receiving a great deal of attention such as benchmarking and tunning of optimisation algorithms, their algorithm design process, and their application to solve challenging real-world problems to face large-scale domains.
540 _aCreative Commons
_fhttps://creativecommons.org/licenses/by/4.0/
_2cc
_4https://creativecommons.org/licenses/by/4.0/
546 _aEnglish
650 7 _aInformation technology industries
_2bicssc
653 _adynamic stream clustering
653 _aonline clustering
653 _ametaheuristics
653 _aoptimisation
653 _apopulation based algorithms
653 _adensity based clustering
653 _ak-means centroid
653 _aconcept drift
653 _aconcept evolution
653 _aimbalanced data
653 _ascreening criteria
653 _aDE-MPFSC algorithm
653 _aMarkov process
653 _aentanglement degree
653 _adata integration
653 _aPSO
653 _arobot
653 _amanipulator
653 _aanalysis
653 _akinematic parameters
653 _aidentification
653 _aapproximate matching
653 _acontext-triggered piecewise hashing
653 _aedit distance
653 _afuzzy hashing
653 _aLZJD
653 _amulti-thread programming
653 _asdhash
653 _asignatures
653 _asimilarity detection
653 _assdeep
653 _amaximum k-coverage
653 _aredundant representation
653 _anormalization
653 _agenetic algorithm
653 _ahybrid algorithms
653 _amemetic algorithms
653 _aparticle swarm
653 _amulti-objective deterministic optimization, derivative-free
653 _aglobal/local optimization
653 _asimulation-based design optimization
653 _awireless sensor networks
653 _arouting
653 _aSwarm Intelligence
653 _aParticle Swarm Optimization
653 _aSocial Network Optimization
653 _acompact optimization
653 _adiscrete optimization
653 _alarge-scale optimization
653 _aone billion variables
653 _aevolutionary algorithms
653 _aestimation distribution algorithms
653 _aalgorithmic design
653 _ametaheuristic optimisation
653 _aevolutionary computation
653 _aswarm intelligence
653 _amemetic computing
653 _aparameter tuning
653 _afitness trend
653 _aWilcoxon rank-sum
653 _aHolm–Bonferroni
653 _abenchmark suite
653 _adata sampling
653 _afeature selection
653 _ainstance weighting
653 _anature-inspired algorithms
653 _ameta-heuristic algorithms
856 4 0 _awww.oapen.org
_uhttps://mdpi.com/books/pdfview/book/3131
_70
_zDOAB: download the publication
856 4 0 _awww.oapen.org
_uhttps://directory.doabooks.org/handle/20.500.12854/69339
_70
_zDOAB: description of the publication
999 _c72668
_d72668