000 01725naaaa2200253uu 4500
001 https://directory.doabooks.org/handle/20.500.12854/54878
005 20220220075308.0
020 _aKSP/1000059741
020 _a9783731505839
024 7 _a10.5445/KSP/1000059741
_cdoi
041 0 _aEnglish
042 _adc
100 1 _aEslami, Reza
_4auth
245 1 0 _aA novel micro-mechanical model for prediction of multiaxial high cycle fatigue at small scales
260 _bKIT Scientific Publishing
_c2017
300 _a1 electronic resource (X, 112 p. p.)
506 0 _aOpen Access
_2star
_fUnrestricted online access
520 _aThe grain microstructure and damage mechanisms at the grain level are the key factors that influence fatigue of metals at small scales. This is addressed in this work by establishing a new micro-mechanical model for prediction of multiaxial high cycle fatigue (HCF) at a length scale of 5-100?m. The HCF model considers elasto-plastic behavior of metals at the grain level and microstructural parameters, specifically the grain size and the grain orientation.
540 _aCreative Commons
_fhttps://creativecommons.org/licenses/by-sa/4.0/
_2cc
_4https://creativecommons.org/licenses/by-sa/4.0/
546 _aEnglish
653 _aMehrachsige hochzyklische Ermüdung (HCF) Korngröße und Kornorientierung Mikroschädigung Probabilistische Methoden MEMSMultiaxial high cycle fatigue (HCF) Grain size and grain orientation Micro-damage Probabilistic methods MEMS
856 4 0 _awww.oapen.org
_uhttps://www.ksp.kit.edu/9783731505839
_70
_zDOAB: download the publication
856 4 0 _awww.oapen.org
_uhttps://directory.doabooks.org/handle/20.500.12854/54878
_70
_zDOAB: description of the publication
999 _c74386
_d74386