000 01679naaaa2200253uu 4500
001 https://directory.doabooks.org/handle/20.500.12854/61100
005 20220220081759.0
020 _aKSP/1000054248
020 _a9783731505174
024 7 _a10.5445/KSP/1000054248
_cdoi
041 0 _aEnglish
042 _adc
100 1 _aFaion, Florian
_4auth
245 1 0 _aTracking Extended Objects in Noisy Point Clouds with Application in Telepresence Systems
260 _bKIT Scientific Publishing
_c2016
300 _a1 electronic resource (XV, 197 p. p.)
506 0 _aOpen Access
_2star
_fUnrestricted online access
520 _aWe discuss theory and application of extended object tracking. This task is challenging as sensor noise prevents a correct association of the measurements to their sources on the object, the shape itself might be unknown a priori, and due to occlusion effects, only parts of the object are visible at a given time. We propose an approach to track the parameters of arbitrary objects, which provides new solutions to the above challenges, and marks a significant advance to the state of the art.
540 _aCreative Commons
_fhttps://creativecommons.org/licenses/by-sa/4.0/
_2cc
_4https://creativecommons.org/licenses/by-sa/4.0/
546 _aEnglish
653 _aTracking Bayesschätzer Microsoft Kinect Formschätzung Partial LikelihoodTracking Bayesian Estimation Microsoft Kinect Shape Fitting Partial Likelihood
856 4 0 _awww.oapen.org
_uhttps://www.ksp.kit.edu/9783731505174
_70
_zDOAB: download the publication
856 4 0 _awww.oapen.org
_uhttps://directory.doabooks.org/handle/20.500.12854/61100
_70
_zDOAB: description of the publication
999 _c75517
_d75517