000 03568naaaa2200733uu 4500
001 https://directory.doabooks.org/handle/20.500.12854/47707
005 20220220081933.0
020 _abooks978-3-03921-671-0
020 _a9783039216703
020 _a9783039216710
024 7 _a10.3390/books978-3-03921-671-0
_cdoi
041 0 _aEnglish
042 _adc
100 1 _aKurzydlowski, Dominik
_4auth
700 1 _aHermann, Andreas
_4auth
245 1 0 _aFirst-Principles Prediction of Structures and Properties in Crystals
260 _bMDPI - Multidisciplinary Digital Publishing Institute
_c2019
300 _a1 electronic resource (128 p.)
506 0 _aOpen Access
_2star
_fUnrestricted online access
520 _aThe term “first-principles calculations” is a synonym for the numerical determination of the electronic structure of atoms, molecules, clusters, or materials from ‘first principles’, i.e., without any approximations to the underlying quantum-mechanical equations. Although numerous approximate approaches have been developed for small molecular systems since the late 1920s, it was not until the advent of the density functional theory (DFT) in the 1960s that accurate “first-principles” calculations could be conducted for crystalline materials. The rapid development of this method over the past two decades allowed it to evolve from an explanatory to a truly predictive tool. Yet, challenges remain: complex chemical compositions, variable external conditions (such as pressure), defects, or properties that rely on collective excitations—all represent computational and/or methodological bottlenecks. This Special Issue comprises a collection of papers that use DFT to tackle some of these challenges and thus highlight what can (and cannot yet) be achieved using first-principles calculations of crystals.
540 _aCreative Commons
_fhttps://creativecommons.org/licenses/by-nc-nd/4.0/
_2cc
_4https://creativecommons.org/licenses/by-nc-nd/4.0/
546 _aEnglish
653 _aab initio
653 _an/a
653 _amagnetic Lennard–Jones
653 _asuperconductivity
653 _aglobal optimisation
653 _aelectrical engineering
653 _afirst-principles
653 _asemiconductors
653 _arefractory metals
653 _agenetic algorithm
653 _aDFT
653 _acrystal structure prediction
653 _aelectronic structure
653 _aindium arsenide
653 _avan der Waals corrections
653 _acharged defects
653 _aIr-based intermetallics
653 _apoint defects
653 _aelectronic properties
653 _alearning algorithms
653 _ahalf-Heusler alloy
653 _amolecular crystals
653 _achlorine
653 _aoptical properties
653 _aab initio calculations
653 _amagnetic properties
653 _astructure prediction
653 _athermoelectricity
653 _ahigh-pressure
653 _adensity functional theory
653 _amagnetic materials
653 _astructural fingerprint
653 _acrystal structure
653 _asemihard materials
653 _asilver
653 _aformation energy
653 _aHeusler alloy
653 _abattery materials
653 _aelastic properties
856 4 0 _awww.oapen.org
_uhttps://mdpi.com/books/pdfview/book/1746
_70
_zDOAB: download the publication
856 4 0 _awww.oapen.org
_uhttps://directory.doabooks.org/handle/20.500.12854/47707
_70
_zDOAB: description of the publication
999 _c75593
_d75593