000 01796naaaa2200349uu 4500
001 https://directory.doabooks.org/handle/20.500.12854/51747
005 20220220082048.0
020 _aKSP/1000045577
020 _a9783731503422
024 7 _a10.5445/KSP/1000045577
_cdoi
041 0 _aEnglish
042 _adc
100 1 _aReinhardt, Marc
_4auth
245 1 0 _aLinear Estimation in Interconnected Sensor Systems with Information Constraints
260 _bKIT Scientific Publishing
_c2015
300 _a1 electronic resource (XVII, 227 p. p.)
506 0 _aOpen Access
_2star
_fUnrestricted online access
520 _aA ubiquitous challenge in many technical applications is to estimate an unknown state by means of data that stems from several, often heterogeneous sensor sources. In this book, information is interpreted stochastically, and techniques for the distributed processing of data are derived that minimize the error of estimates about the unknown state. Methods for the reconstruction of dependencies are proposed and novel approaches for the distributed processing of noisy data are developed.
540 _aCreative Commons
_fhttps://creativecommons.org/licenses/by-sa/4.0/
_2cc
_4https://creativecommons.org/licenses/by-sa/4.0/
546 _aEnglish
653 _aSchätztheorie
653 _aKalman Filter
653 _aestimation theory
653 _aSensornetze
653 _aVerteilte SystemsData fusion
653 _adistributed systems
653 _aDatenfusion
653 _asensor networks
653 _aKalman filtering
856 4 0 _awww.oapen.org
_uhttps://www.ksp.kit.edu/9783731503422
_70
_zDOAB: download the publication
856 4 0 _awww.oapen.org
_uhttps://directory.doabooks.org/handle/20.500.12854/51747
_70
_zDOAB: description of the publication
999 _c75642
_d75642