000 04856naaaa2201261uu 4500
001 https://directory.doabooks.org/handle/20.500.12854/68597
005 20220220083017.0
020 _abooks978-3-03936-237-0
020 _a9783039362363
020 _a9783039362370
024 7 _a10.3390/books978-3-03936-237-0
_cdoi
041 0 _aEnglish
042 _adc
072 7 _aGP
_2bicssc
072 7 _aPS
_2bicssc
100 1 _aSantero, Eduardo
_4edt
700 1 _aDíaz, Eduardo
_4edt
700 1 _aSantero, Eduardo
_4oth
700 1 _aDíaz, Eduardo
_4oth
245 1 0 _aGenetics of Biodegradation and Bioremediation
260 _aBasel, Switzerland
_bMDPI - Multidisciplinary Digital Publishing Institute
_c2020
300 _a1 electronic resource (240 p.)
506 0 _aOpen Access
_2star
_fUnrestricted online access
520 _aMany biodegradation pathways, both aerobic and anaerobic, have already been characterised, and the phylogenetic relationships among catabolic genes within them have been studied. However, new biodegradation activities and their coding genes are continuously being reported, including those involved in the catabolism of emerging contaminants and those generally regarded as non-biodegradable. Gene regulation is also an important issue for the efficient biodegradation of contaminants. Specific induction by the substrate and over-imposed global regulatory networks adjust the expression of the biodegradation genes to meet bacterial physiological needs. New biodegradation pathways can be assembled in a particular strain or in a bacterial consortium by recruiting biodegradation genes from different origins through horizontal gene transfer. The abundance and diversity of biodegradation genes, analysed by either genomic or metagenomic approaches, constitute valuable indicators of the biodegradation potential of a particular environmental niche. This knowledge paves the way to systems metabolic engineering approaches to valorise biowaste for the production of value-added products.
540 _aCreative Commons
_fhttps://creativecommons.org/licenses/by/4.0/
_2cc
_4https://creativecommons.org/licenses/by/4.0/
546 _aEnglish
650 7 _aResearch & information: general
_2bicssc
650 7 _aBiology, life sciences
_2bicssc
653 _atetralin
653 _aSphingopyxis granuli strain TFA
653 _aRhodococcus sp. strain TFB
653 _aredox proteins
653 _acarbon catabolite repression
653 _aplastics
653 _abiodegradation
653 _asustainability
653 _aupcycling
653 _abiotransformations
653 _apolyethylene terephthalate
653 _aterephthalate
653 _aethylene glycol
653 _abiphenyl
653 _abph gene
653 _aintegrative conjugative element
653 _agenome sequence
653 _aLysR
653 _atranscription factor
653 _aAcinetobacter
653 _aLTTR
653 _abenzoate
653 _amuconate
653 _asynergism
653 _abiosensor
653 _anaphthalene
653 _atoluene
653 _ahydrocarbons
653 _aplant growth promotion
653 _abioremediation
653 _aPseudomonas
653 _asoil pollution
653 _aphytoremediation
653 _arhizoremediation
653 _adiesel
653 _abacteria
653 _aconsortium
653 _ametagenomics
653 _aPAHs
653 _aTPH
653 _aregulation
653 _aanaerobic
653 _aAzoarcus
653 _apromoter architecture
653 _abioethanol
653 _afurfural
653 _aALE
653 _aAraC
653 _asterols
653 _abile acids
653 _asteroid hormones
653 _a9,10-seco pathway
653 _a4,5-seco pathway
653 _a2,3-seco pathway
653 _axenobiotics
653 _aCarbaryl
653 _ahorizontal gene transfer
653 _amobile genetic elements
653 _atransposons
653 _aintegrative conjugative elements
653 _apathway assembly
653 _aevolution
653 _aSphingopyxis lindanitolerans
653 _apesticide
653 _acomplete genome sequence
653 _apangenome
653 _aγ-HCH degradation
653 _alin genes
653 _atestosterone
653 _asteroid
653 _acatabolism
653 _atranscriptomic
653 _avalorisation
653 _acatabolic pathway
653 _amobile DNA
653 _aanaerobic biodegradation
653 _agene regulation
856 4 0 _awww.oapen.org
_uhttps://mdpi.com/books/pdfview/book/2359
_70
_zDOAB: download the publication
856 4 0 _awww.oapen.org
_uhttps://directory.doabooks.org/handle/20.500.12854/68597
_70
_zDOAB: description of the publication
999 _c76068
_d76068