| 000 | 06161naaaa2201525uu 4500 | ||
|---|---|---|---|
| 001 | https://directory.doabooks.org/handle/20.500.12854/76874 | ||
| 005 | 20220220085835.0 | ||
| 020 | _abooks978-3-0365-2007-0 | ||
| 020 | _a9783036520063 | ||
| 020 | _a9783036520070 | ||
| 024 | 7 |
_a10.3390/books978-3-0365-2007-0 _cdoi |
|
| 041 | 0 | _aEnglish | |
| 042 | _adc | ||
| 072 | 7 |
_aGP _2bicssc |
|
| 072 | 7 |
_aP _2bicssc |
|
| 100 | 1 |
_aVoskoglou, Michael _4edt |
|
| 700 | 1 |
_aVoskoglou, Michael _4oth |
|
| 245 | 1 | 0 | _aFuzzy Sets, Fuzzy Logic and Their Applications 2020 |
| 260 |
_aBasel, Switzerland _bMDPI - Multidisciplinary Digital Publishing Institute _c2021 |
||
| 300 | _a1 electronic resource (452 p.) | ||
| 506 | 0 |
_aOpen Access _2star _fUnrestricted online access |
|
| 520 | _aThe present book contains the 24 total articles accepted and published in the Special Issue “Fuzzy Sets, Fuzzy Logic and Their Applications, 2020” of the MDPI Mathematics journal, which covers a wide range of topics connected to the theory and applications of fuzzy sets and systems of fuzzy logic and their extensions/generalizations. These topics include, among others, elements from fuzzy graphs; fuzzy numbers; fuzzy equations; fuzzy linear spaces; intuitionistic fuzzy sets; soft sets; type-2 fuzzy sets, bipolar fuzzy sets, plithogenic sets, fuzzy decision making, fuzzy governance, fuzzy models in mathematics of finance, a philosophical treatise on the connection of the scientific reasoning with fuzzy logic, etc. It is hoped that the book will be interesting and useful for those working in the area of fuzzy sets, fuzzy systems and fuzzy logic, as well as for those with the proper mathematical background and willing to become familiar with recent advances in fuzzy mathematics, which has become prevalent in almost all sectors of the human life and activity. | ||
| 540 |
_aCreative Commons _fhttps://creativecommons.org/licenses/by/4.0/ _2cc _4https://creativecommons.org/licenses/by/4.0/ |
||
| 546 | _aEnglish | ||
| 650 | 7 |
_aResearch & information: general _2bicssc |
|
| 650 | 7 |
_aMathematics & science _2bicssc |
|
| 653 | _abipolar gradation of openness | ||
| 653 | _abipolar gradation of closedness | ||
| 653 | _abipolar fuzzy topology | ||
| 653 | _abipolar gradation preserving map | ||
| 653 | _afuzzy collaborative forecasting | ||
| 653 | _adynamic random access memory | ||
| 653 | _apartial consensus | ||
| 653 | _afuzzy intersection | ||
| 653 | _afuzzy linear system | ||
| 653 | _afuzzy number | ||
| 653 | _afuzzy number vector | ||
| 653 | _aembedding method | ||
| 653 | _ainductive and deductive reasoning | ||
| 653 | _afuzzy logic (FL) | ||
| 653 | _ascientific method | ||
| 653 | _aprobability and statistics | ||
| 653 | _aBayesian probabilities | ||
| 653 | _afuzzy implication | ||
| 653 | _aordering property | ||
| 653 | _aleast fuzzy negation | ||
| 653 | _at-conditionality | ||
| 653 | _aneutrosophic set | ||
| 653 | _aplithogenic set | ||
| 653 | _afuzzy set | ||
| 653 | _aentropy | ||
| 653 | _asimilarity measure | ||
| 653 | _ainformation measure | ||
| 653 | _aHyers-Ulam stability | ||
| 653 | _apexider type functional equation | ||
| 653 | _aintuitionistic fuzzy normed spaces | ||
| 653 | _aalternative fixed point theorem | ||
| 653 | _ainterval-valued fuzzy competition graph | ||
| 653 | _ainterval-valued fuzzy p competition graph | ||
| 653 | _ainterval-valued fuzzy neighbourhood graph | ||
| 653 | _ainterval-valued m-step fuzzy competition graph | ||
| 653 | _ahomomorphism of graph products | ||
| 653 | _amax-min algebra | ||
| 653 | _afuzzy max-T algebra | ||
| 653 | _aŁukasiewicz triangular norm | ||
| 653 | _amax-Łukasiewicz algebra | ||
| 653 | _aparametric solvability | ||
| 653 | _asoft set | ||
| 653 | _afuzzy soft set | ||
| 653 | _amulti-fuzzy set | ||
| 653 | _amulti-fuzzy soft set | ||
| 653 | _aℒℳℱ?? | ||
| 653 | _asimilarity measure of ℒℳℱ?? | ||
| 653 | _asite selection | ||
| 653 | _ashopping mall site selection | ||
| 653 | _alinguistic terms for fuzzy variable | ||
| 653 | _afuzzy AHP | ||
| 653 | _afuzzy TOPSIS | ||
| 653 | _aoctahedron set | ||
| 653 | _ai-octahedron subgroupoid | ||
| 653 | _ai-octahedron ideal | ||
| 653 | _ai-sup-property, i-octahedron subgroup | ||
| 653 | _ai-octahedron subring | ||
| 653 | _ainterval matrix | ||
| 653 | _ainterval eigenvector | ||
| 653 | _astrong interval eigenvector | ||
| 653 | _afuzzy nonlinear systems | ||
| 653 | _afuzzy arithmetic | ||
| 653 | _afuzzy calculus | ||
| 653 | _amultidimensional fuzzy arithmetic | ||
| 653 | _aRDM fuzzy arithmetic | ||
| 653 | _afuzzy parametric form | ||
| 653 | _afuzzy measures | ||
| 653 | _amonotone measures | ||
| 653 | _aproduct spaces | ||
| 653 | _aSchauder fixed point theorem | ||
| 653 | _afuzzy normed linear space | ||
| 653 | _at-norm | ||
| 653 | _ameasure of non-compactness | ||
| 653 | _afuzzy logic connectives | ||
| 653 | _alaw of importation | ||
| 653 | _aα-migrativity | ||
| 653 | _adistance measure | ||
| 653 | _afuzzy differential equations | ||
| 653 | _afuzzy difference equations | ||
| 653 | _amixed continuous-discrete model | ||
| 653 | _astrongly generalized Hukuhara differentiability | ||
| 653 | _atime value of money | ||
| 653 | _aGEFS | ||
| 653 | _aSEFS | ||
| 653 | _afuzzy relations: fuzzy sets | ||
| 653 | _amax–min composition | ||
| 653 | _amin–max composition | ||
| 653 | _amonotone statistical parameters | ||
| 653 | _afuzzy statistics | ||
| 653 | _aFAHP | ||
| 653 | _aFTOPSIS | ||
| 653 | _aFCOPRAS | ||
| 653 | _ahexagonal fuzzy number | ||
| 653 | _agovernance | ||
| 653 | _afuzzy logic | ||
| 653 | _amanagement system | ||
| 653 | _atype-2 fuzzy set | ||
| 653 | _afuzzification | ||
| 653 | _atype-reduction | ||
| 653 | _adefuzzification | ||
| 653 | _aB-spline surface model function | ||
| 856 | 4 | 0 |
_awww.oapen.org _uhttps://mdpi.com/books/pdfview/book/4344 _70 _zDOAB: download the publication |
| 856 | 4 | 0 |
_awww.oapen.org _uhttps://directory.doabooks.org/handle/20.500.12854/76874 _70 _zDOAB: description of the publication |
| 999 |
_c77324 _d77324 |
||