| 000 | 03771naaaa2200925uu 4500 | ||
|---|---|---|---|
| 001 | https://directory.doabooks.org/handle/20.500.12854/69447 | ||
| 005 | 20220220092236.0 | ||
| 020 | _abooks978-3-03943-674-3 | ||
| 020 | _a9783039436736 | ||
| 020 | _a9783039436743 | ||
| 024 | 7 |
_a10.3390/books978-3-03943-674-3 _cdoi |
|
| 041 | 0 | _aEnglish | |
| 042 | _adc | ||
| 072 | 7 |
_aGP _2bicssc |
|
| 072 | 7 |
_aPS _2bicssc |
|
| 100 | 1 |
_aGovorunova, Elena G. _4edt |
|
| 700 | 1 |
_aSineshchekov, Oleg A. _4edt |
|
| 700 | 1 |
_aGovorunova, Elena G. _4oth |
|
| 700 | 1 |
_aSineshchekov, Oleg A. _4oth |
|
| 245 | 1 | 0 | _aThe Advances and Applications of Optogenetics |
| 260 |
_aBasel, Switzerland _bMDPI - Multidisciplinary Digital Publishing Institute _c2020 |
||
| 300 | _a1 electronic resource (164 p.) | ||
| 506 | 0 |
_aOpen Access _2star _fUnrestricted online access |
|
| 520 | _aThis book provides an update for the rapidly developing technology known as “optogenetics”, which is the use of genetically encoded light-sensitive molecular elements (usually derived from lower organisms) to control or report various physiological and biochemical processes within the cell. Two ongoing clinical trials use optogenetic tools for vision restoration, and optogenetic strategies have been suggested as novel therapies for several neurological, psychiatric and cardiac disorders. This Special Issue comprises two reviews and seven experimental papers on different types of light-sensitive modules widely used in optogenetic studies. These papers demonstrate the efficiency and versatility of optogenetics and are expected to be equally relevant for advanced users and beginners considering using optogenetic tools in their research. | ||
| 540 |
_aCreative Commons _fhttps://creativecommons.org/licenses/by/4.0/ _2cc _4https://creativecommons.org/licenses/by/4.0/ |
||
| 546 | _aEnglish | ||
| 650 | 7 |
_aResearch & information: general _2bicssc |
|
| 650 | 7 |
_aBiology, life sciences _2bicssc |
|
| 653 | _aoptogenetic tools | ||
| 653 | _aneuroscience | ||
| 653 | _acalcium sensor | ||
| 653 | _avoltage sensor | ||
| 653 | _aneurotransmitters | ||
| 653 | _aoptogenetics | ||
| 653 | _achannelrhodopsins | ||
| 653 | _asodium | ||
| 653 | _acalcium | ||
| 653 | _aDC gate | ||
| 653 | _aOptogenetics | ||
| 653 | _ap53 | ||
| 653 | _aAsLOV2 | ||
| 653 | _aLINuS | ||
| 653 | _aLEXY | ||
| 653 | _aMIP | ||
| 653 | _aPMI | ||
| 653 | _aChlamydomonas reinhardtii | ||
| 653 | _aion channel | ||
| 653 | _aelectrophysiology | ||
| 653 | _amolecular dynamics simulations | ||
| 653 | _amembrane-protein interaction | ||
| 653 | _aenergy of membrane deformation | ||
| 653 | _aCTMD method, residual hydrophobic mismatch | ||
| 653 | _amicrobial rhodopsin | ||
| 653 | _achannelrhodopsin | ||
| 653 | _amembrane current | ||
| 653 | _ahippocampal neurons | ||
| 653 | _alight stimulation | ||
| 653 | _achannelrhodopsin-2 | ||
| 653 | _aphotoreceptor | ||
| 653 | _aBLUF | ||
| 653 | _amodular domain | ||
| 653 | _aresonance Raman | ||
| 653 | _aflash photolysis | ||
| 653 | _ahybrid QM/MM simulation | ||
| 653 | _atwo-photon | ||
| 653 | _aazobenzene | ||
| 653 | _aphotoswitch | ||
| 653 | _aphotoswitching | ||
| 653 | _aphotocontrol | ||
| 653 | _aall-optical electrophysiology | ||
| 653 | _amicrobial rhodopsins | ||
| 653 | _aion channels | ||
| 653 | _aLOV domains | ||
| 653 | _amembrane potential | ||
| 653 | _aintracellular trafficking | ||
| 653 | _aprotein–protein interaction | ||
| 653 | _asignaling | ||
| 856 | 4 | 0 |
_awww.oapen.org _uhttps://mdpi.com/books/pdfview/book/3251 _70 _zDOAB: download the publication |
| 856 | 4 | 0 |
_awww.oapen.org _uhttps://directory.doabooks.org/handle/20.500.12854/69447 _70 _zDOAB: description of the publication |
| 999 |
_c78396 _d78396 |
||