| 000 | 04822naaaa2201141uu 4500 | ||
|---|---|---|---|
| 001 | https://directory.doabooks.org/handle/20.500.12854/58231 | ||
| 005 | 20220220093053.0 | ||
| 020 | _abooks978-3-03928-367-5 | ||
| 020 | _a9783039283675 | ||
| 020 | _a9783039283668 | ||
| 024 | 7 |
_a10.3390/books978-3-03928-367-5 _cdoi |
|
| 041 | 0 | _aEnglish | |
| 042 | _adc | ||
| 100 | 1 |
_aDion-Côté, Anne-Marie _4auth |
|
| 700 | 1 |
_aBarbash, Daniel A. _4auth |
|
| 700 | 1 |
_aClark, Andrew G. _4auth |
|
| 700 | 1 |
_aLower, Sarah E. _4auth |
|
| 245 | 1 | 0 | _aRepetitive DNA Sequences |
| 260 |
_bMDPI - Multidisciplinary Digital Publishing Institute _c2020 |
||
| 300 | _a1 electronic resource (206 p.) | ||
| 506 | 0 |
_aOpen Access _2star _fUnrestricted online access |
|
| 520 | _aRepetitive DNA is ubiquitous in eukaryotic genomes, and, in many species, comprises the bulk of the genome. Repeats include transposable elements that can self-mobilize and disperse around the genome, and tandemly-repeated satellite DNAs that increase in copy number due to replication slippage and unequal crossing over. Despite their abundance, repetitive DNA is often ignored in genomic studies due to technical challenges in their identification, assembly, and quantification. New technologies and methods are now providing the unprecedented power to analyze repetitive DNAs across diverse taxa. Repetitive DNA is of particular interest because it can represent distinct modes of genome evolution. Some repetitive DNA forms essential genome structures, such as telomeres and centromeres, which are required for proper chromosome maintenance and segregation, whereas others form piRNA clusters that regulate transposable elements; thus, these elements are expected to evolve under purifying selection. In contrast, other repeats evolve selfishly and produce genetic conflicts with their host species that drive adaptive evolution of host defense systems. However, the majority of repeats likely accumulate in eukaryotes in the absence of selection due to mechanisms of transposition and unequal crossing over. Even these neutral repeats may indirectly influence genome evolution as they reach high abundance. In this Special Issue, the contributing authors explore these questions from a range of perspectives. | ||
| 540 |
_aCreative Commons _fhttps://creativecommons.org/licenses/by-nc-nd/4.0/ _2cc _4https://creativecommons.org/licenses/by-nc-nd/4.0/ |
||
| 546 | _aEnglish | ||
| 653 | _atransgene | ||
| 653 | _azebra finch | ||
| 653 | _atranscription | ||
| 653 | _aendogenous retrovirus | ||
| 653 | _atransposable element | ||
| 653 | _acentromere drive | ||
| 653 | _aarthropods | ||
| 653 | _aPSR (Paternal sex ratio) | ||
| 653 | _aAlu | ||
| 653 | _agene evolution | ||
| 653 | _anuclear rDNA | ||
| 653 | _aepigenetics | ||
| 653 | _aheterochromatin | ||
| 653 | _aalpha satellite | ||
| 653 | _aSu(Hw) | ||
| 653 | _arepeated elements | ||
| 653 | _akaryotype | ||
| 653 | _apiRNA cluster | ||
| 653 | _agene duplication | ||
| 653 | _asuper-Mendelian | ||
| 653 | _aestrildidae | ||
| 653 | _agenomic conflict | ||
| 653 | _aGC-content | ||
| 653 | _asegregation | ||
| 653 | _aCENP-A | ||
| 653 | _adrift | ||
| 653 | _agermline | ||
| 653 | _ahobo | ||
| 653 | _aI element | ||
| 653 | _arepetitive DNA | ||
| 653 | _atransposons | ||
| 653 | _ahuman satellites | ||
| 653 | _aretrotransposons | ||
| 653 | _agenome assembly | ||
| 653 | _aLTR retrotransposons | ||
| 653 | _asatellite DNA | ||
| 653 | _astructural variation | ||
| 653 | _aselection | ||
| 653 | _ahost genome | ||
| 653 | _aUraeginthus cyanocephalus | ||
| 653 | _aLINE-1 | ||
| 653 | _aB chromosomes | ||
| 653 | _aERV | ||
| 653 | _aarms race | ||
| 653 | _asequence variation | ||
| 653 | _asecondary structure | ||
| 653 | _aHeT-A and TART telomeric retrotransposons | ||
| 653 | _adatabase | ||
| 653 | _agenetic conflict | ||
| 653 | _acoevolution | ||
| 653 | _ancRNAs (non coding RNAs) | ||
| 653 | _arepeat | ||
| 653 | _acentromeric transcription | ||
| 653 | _anucleolus | ||
| 653 | _asatellite | ||
| 653 | _ainsulator | ||
| 653 | _aRhino | ||
| 653 | _apopulation genetics | ||
| 653 | _acentromere | ||
| 653 | _agenome annotation | ||
| 653 | _ahorizontal transfer | ||
| 653 | _arRNA | ||
| 653 | _agenome elimination | ||
| 653 | _agenome evolution | ||
| 653 | _aevolution | ||
| 653 | _achromosome evolution | ||
| 653 | _agenome size | ||
| 653 | _agenome | ||
| 653 | _adrosophila | ||
| 653 | _atransposable elements | ||
| 653 | _aselfish elements | ||
| 856 | 4 | 0 |
_awww.oapen.org _uhttps://mdpi.com/books/pdfview/book/2048 _70 _zDOAB: download the publication |
| 856 | 4 | 0 |
_awww.oapen.org _uhttps://directory.doabooks.org/handle/20.500.12854/58231 _70 _zDOAB: description of the publication |
| 999 |
_c78773 _d78773 |
||