000 04822naaaa2201141uu 4500
001 https://directory.doabooks.org/handle/20.500.12854/58231
005 20220220093053.0
020 _abooks978-3-03928-367-5
020 _a9783039283675
020 _a9783039283668
024 7 _a10.3390/books978-3-03928-367-5
_cdoi
041 0 _aEnglish
042 _adc
100 1 _aDion-Côté, Anne-Marie
_4auth
700 1 _aBarbash, Daniel A.
_4auth
700 1 _aClark, Andrew G.
_4auth
700 1 _aLower, Sarah E.
_4auth
245 1 0 _aRepetitive DNA Sequences
260 _bMDPI - Multidisciplinary Digital Publishing Institute
_c2020
300 _a1 electronic resource (206 p.)
506 0 _aOpen Access
_2star
_fUnrestricted online access
520 _aRepetitive DNA is ubiquitous in eukaryotic genomes, and, in many species, comprises the bulk of the genome. Repeats include transposable elements that can self-mobilize and disperse around the genome, and tandemly-repeated satellite DNAs that increase in copy number due to replication slippage and unequal crossing over. Despite their abundance, repetitive DNA is often ignored in genomic studies due to technical challenges in their identification, assembly, and quantification. New technologies and methods are now providing the unprecedented power to analyze repetitive DNAs across diverse taxa. Repetitive DNA is of particular interest because it can represent distinct modes of genome evolution. Some repetitive DNA forms essential genome structures, such as telomeres and centromeres, which are required for proper chromosome maintenance and segregation, whereas others form piRNA clusters that regulate transposable elements; thus, these elements are expected to evolve under purifying selection. In contrast, other repeats evolve selfishly and produce genetic conflicts with their host species that drive adaptive evolution of host defense systems. However, the majority of repeats likely accumulate in eukaryotes in the absence of selection due to mechanisms of transposition and unequal crossing over. Even these neutral repeats may indirectly influence genome evolution as they reach high abundance. In this Special Issue, the contributing authors explore these questions from a range of perspectives.
540 _aCreative Commons
_fhttps://creativecommons.org/licenses/by-nc-nd/4.0/
_2cc
_4https://creativecommons.org/licenses/by-nc-nd/4.0/
546 _aEnglish
653 _atransgene
653 _azebra finch
653 _atranscription
653 _aendogenous retrovirus
653 _atransposable element
653 _acentromere drive
653 _aarthropods
653 _aPSR (Paternal sex ratio)
653 _aAlu
653 _agene evolution
653 _anuclear rDNA
653 _aepigenetics
653 _aheterochromatin
653 _aalpha satellite
653 _aSu(Hw)
653 _arepeated elements
653 _akaryotype
653 _apiRNA cluster
653 _agene duplication
653 _asuper-Mendelian
653 _aestrildidae
653 _agenomic conflict
653 _aGC-content
653 _asegregation
653 _aCENP-A
653 _adrift
653 _agermline
653 _ahobo
653 _aI element
653 _arepetitive DNA
653 _atransposons
653 _ahuman satellites
653 _aretrotransposons
653 _agenome assembly
653 _aLTR retrotransposons
653 _asatellite DNA
653 _astructural variation
653 _aselection
653 _ahost genome
653 _aUraeginthus cyanocephalus
653 _aLINE-1
653 _aB chromosomes
653 _aERV
653 _aarms race
653 _asequence variation
653 _asecondary structure
653 _aHeT-A and TART telomeric retrotransposons
653 _adatabase
653 _agenetic conflict
653 _acoevolution
653 _ancRNAs (non coding RNAs)
653 _arepeat
653 _acentromeric transcription
653 _anucleolus
653 _asatellite
653 _ainsulator
653 _aRhino
653 _apopulation genetics
653 _acentromere
653 _agenome annotation
653 _ahorizontal transfer
653 _arRNA
653 _agenome elimination
653 _agenome evolution
653 _aevolution
653 _achromosome evolution
653 _agenome size
653 _agenome
653 _adrosophila
653 _atransposable elements
653 _aselfish elements
856 4 0 _awww.oapen.org
_uhttps://mdpi.com/books/pdfview/book/2048
_70
_zDOAB: download the publication
856 4 0 _awww.oapen.org
_uhttps://directory.doabooks.org/handle/20.500.12854/58231
_70
_zDOAB: description of the publication
999 _c78773
_d78773