000 04963naaaa2201213uu 4500
001 https://directory.doabooks.org/handle/20.500.12854/60894
005 20220220100035.0
020 _abooks978-3-03897-837-4
020 _a9783038978374
020 _a9783038978367
024 7 _a10.3390/books978-3-03897-837-4
_cdoi
041 0 _aEnglish
042 _adc
100 1 _aZaffagnini, Mirko
_4auth
700 1 _aJacquot, Jean-Pierre
_4auth
245 1 0 _aThioredoxin and Glutaredoxin Systems
260 _bMDPI - Multidisciplinary Digital Publishing Institute
_c2019
300 _a1 electronic resource (280 p.)
506 0 _aOpen Access
_2star
_fUnrestricted online access
520 _aThis Special Issue features recent data concerning thioredoxins and glutaredoxins from various biological systems, including bacteria, mammals, and plants. Four of the sixteen articles are review papers that deal with the regulation of development of the effect of hydrogen peroxide and the interactions between oxidants and reductants, the description of methionine sulfoxide reductases, detoxification enzymes that require thioredoxin or glutaredoxin, and the response of plants to cold stress, respectively. This is followed by eleven research articles that focus on a reductant of thioredoxin in bacteria, a thioredoxin reductase, and a variety of plant and bacterial thioredoxins, including the m, f, o, and h isoforms and their targets. Various parameters are studied, including genetic, structural, and physiological properties of these systems. The redox regulation of monodehydroascorbate reductase, aminolevulinic acid dehydratase, and cytosolic isocitrate dehydrogenase could have very important consequences in plant metabolism. Also, the properties of the mitochondrial o-type thioredoxins and their unexpected capacity to bind iron–sulfur center (ISC) structures open new developments concerning the redox mitochondrial function and possibly ISC assembly in mitochondria. The final paper discusses interesting biotechnological applications of thioredoxin for breadmaking.
540 _aCreative Commons
_fhttps://creativecommons.org/licenses/by-nc-nd/4.0/
_2cc
_4https://creativecommons.org/licenses/by-nc-nd/4.0/
546 _aEnglish
653 _an/a
653 _aregeneration
653 _aposttranslational modification
653 _aH2O2
653 _achilling stress
653 _athioredoxin reductase
653 _aX-ray crystallography
653 _aphotosynthesis
653 _aChlamydomonas reinhardtii
653 _aprotein
653 _amonodehydroascorbate reductase
653 _amethionine sulfoxide
653 _acysteine reactivity
653 _asymbiosis
653 _aplant
653 _aMALDI-TOF mass spectrometry
653 _athioredoxins
653 _aredox homeostasis
653 _amethionine sulfoxide reductases
653 _aredox
653 _aredox signalling
653 _achloroplast
653 _aprotein-protein recognition
653 _acyanobacteria
653 _aspecificity
653 _awheat
653 _amethanoarchaea
653 _astress
653 _aredox regulation
653 _adough rheology
653 _amethionine sulfoxide reductase
653 _aelectrostatic surface
653 _aCalvin cycle
653 _aALAD
653 _ametazoan
653 _aArabidopsis thaliana
653 _abaking
653 _acold temperature
653 _amacromolecular crystallography
653 _aprotein oxidation
653 _afunction
653 _amethionine oxidation
653 _adevelopment
653 _airon–sulfur cluster
653 _atetrapyrrole biosynthesis
653 _alegume plant
653 _aglutathionylation
653 _aCalvin-Benson cycle
653 _aadult stem cells
653 _acarbon fixation
653 _aplastidial
653 _amethionine
653 _aredox active site
653 _aROS
653 _awater stress
653 _aNADPH
653 _arepair
653 _aphysiological function
653 _asignaling
653 _athioredoxin
653 _aantioxidants
653 _aglutathione
653 _aglutaredoxin
653 _aflavin
653 _aIsocitrate dehydrogenase
653 _athiol redox network
653 _aageing
653 _adisulfide
653 _amitochondria
653 _achlorophyll
653 _aproteomic
653 _acysteine alkylation
653 _aferredoxin-thioredoxin reductase
653 _aSAXS
653 _aregulation
653 _aoxidized protein repair
653 _aascorbate
653 _aredox control
653 _anitrosylation
856 4 0 _awww.oapen.org
_uhttps://mdpi.com/books/pdfview/book/1289
_70
_zDOAB: download the publication
856 4 0 _awww.oapen.org
_uhttps://directory.doabooks.org/handle/20.500.12854/60894
_70
_zDOAB: description of the publication
999 _c80083
_d80083