000 04101naaaa2201057uu 4500
001 https://directory.doabooks.org/handle/20.500.12854/45094
005 20220220100525.0
020 _abooks978-3-03928-325-5
020 _a9783039283255
020 _a9783039283248
024 7 _a10.3390/books978-3-03928-325-5
_cdoi
041 0 _aEnglish
042 _adc
100 1 _aTako, Elad
_4auth
245 1 0 _aDietary Trace Minerals
260 _bMDPI - Multidisciplinary Digital Publishing Institute
_c2020
300 _a1 electronic resource (208 p.)
506 0 _aOpen Access
_2star
_fUnrestricted online access
520 _aDietary trace minerals are pivotal and hold a key role in numerous metabolic processes. Trace mineral deficiencies (except for iodine, iron, and zinc) do not often develop spontaneously in adults on ordinary diets; infants are more vulnerable because their growth is rapid and their intake varies. Trace mineral imbalances can result from hereditary disorders (e.g., hemochromatosis, Wilson disease), kidney dialysis, parenteral nutrition, restrictive diets prescribed for people with inborn errors of metabolism, or various popular diet plans. The Special Issue “Dietary Trace Minerals” comprised 13 peer-reviewed papers on the most recent evidence regarding the dietary intake of trace minerals, as well as their effect on the prevention and treatment of non-communicable diseases. Original contributions and literature reviews further demonstrated the crucial and central part that dietary trace minerals play in human health and development. This editorial provides a brief and concise overview of the content of the Dietary Trace Minerals Special Issue.
540 _aCreative Commons
_fhttps://creativecommons.org/licenses/by-nc-nd/4.0/
_2cc
_4https://creativecommons.org/licenses/by-nc-nd/4.0/
546 _aEnglish
653 _aserum iron
653 _apolyphenols
653 _aCaco-2 cell bioassay
653 _acopper metabolic system
653 _aphytate
653 _acopper/silver transport
653 _ainternational nutrition
653 _abody composition
653 _achildren
653 _ahealthy food
653 _abiofilm
653 _ayellow bean
653 _airon deficiency
653 _airon bioavailability
653 _astress sentinel
653 _azinc
653 _azinc deficiency
653 _aGallus gallus
653 _avitamin D supplements
653 _aadolescents
653 _agerm
653 _aArab
653 _aanemia
653 _ametagenome
653 _abioavailability
653 _aLangerhans cells
653 _airon absorption
653 _amagnesium ions
653 _aferritin
653 _aascorbic acid
653 _aadults
653 _acell membrane
653 _acooking time
653 _adietary trace minerals
653 _agut microbiome
653 _akaempferol 3-glucoside
653 _aselenium
653 _aCaco-2
653 _aNrf2
653 _abeans
653 _aBiofortification
653 _aepicatechin
653 _aPhaseolus vulgaris L.
653 _acopper
653 _aintestinal morphometry
653 _abiotin deficiency
653 _adiet
653 _ain vitro digestion
653 _abiofortification
653 _avitamin D
653 _amicrobial development
653 _adairy food
653 _abioimpedance
653 _abioassay
653 _aacrodermatitis enteropathica
653 _airon transport and metabolism
653 _amaize
653 _airon deficiency anemia
653 _ahomeostasis
653 _asilicon
653 _asilver nanoparticles
653 _adeficiency
653 _ahemochromatosis
653 _aadenosine triphosphate
653 _airon
653 _aMexico
653 _aplasma
856 4 0 _awww.oapen.org
_uhttps://mdpi.com/books/pdfview/book/2041
_70
_zDOAB: download the publication
856 4 0 _awww.oapen.org
_uhttps://directory.doabooks.org/handle/20.500.12854/45094
_70
_zDOAB: description of the publication
999 _c80283
_d80283